OK=ON=OE-это все радиусы вписанной окружности в трапецию
ОС -биссектриса <C, OD-биссектриса <D
<C+<D=180, значит <KCO+<KDO=90-как сумма половинок углов С и D
ΔCOD-прямоугольный так как <COD=180-( <KCO+<KDO)=90
ОК в нем высота, тогда
OK^2=CK*KD(теорема: высота в прямоугольном треугольнике из прямого угла-это средне геометрическое отрезков, на которые она делит гипотенузу)
OK^2=10*40=400
OK=20=ON
SK^2=OK^2+SO^2=400+125=525
SK=√525=5√21
OC^2=OK^2+CK^2=400+100=500
OC=10√5
SC^2=OC^2+SO^2=500+125=625
SC=25
1-Г
2-Д
3-А
4-Б
Уравнение АВ: (x-(-3))/(5-(-3) = (y-3)/(-1-3) или (x + 3)/8 = (y - 3)/(-4).
В общем виде x + 2y - 3 = 0.
Так как высота АД - горизонтальная линия, то уравнение стороны ВС:
х = 5.
В уравнении высоты СД как перпендикуляра к АВ коэффициенты А и В меняются на -В и А (скалярное произведение равно 0).
Уравнение СД: -2х + у + С = 0. Подставим координаты точки Д, через которую проходит высота: -2*4 + 1*3 + С = 0, отсюда С = 8-3 = 5.
Уравнение СД: -2х + у + 5 = 0.
Находим координаты точки С как точки пересечения стороны ВС и высоты СД:
{x = 5,
{-2х + у + 5 = 0, подставим х = 5.
-2*5 + у + 5 = 0, у = 10 - 5 = 5.
Точка С(5;5).
Уравнение АС: (x-(-3))/(5-(-3) = (y-3)/(5-3) или (x + 3)/8 = (y - 3)/2.
В общем виде x - 4y + 15 = 0.