Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
Рассмотрим треугольники ABC и AlBlC1, у которых АВ=А1В1, BC = BlC1 СА=С1А1. Докажем, что ΔАВС =ΔA1B1C1. Приложим треугольник ABC (либо симметричный ему) к треугольнику A1B1C1 так, чтобы вершина А совместилась с вершиной A1, вершина В — с вершиной В1, а вершины С и С1, оказались по разные стороны от прямой А1В1. Рассмотрим 3 случая: 1) Луч С1С проходит внутри угла А1С1В1. Так как по условию теоремы стороны АС и A1C1, ВС и В1С1 равны, то треугольники A1C1C и В1С1С — равнобедренные. По теореме о свойстве углов равнобедренного треугольника ∠1 = ∠2, ∠3 = ∠4, поэтому ∠ACB=∠A1C1B1. 2) Луч С1С совпадает с одной из сторон этого угла. A лежит на CC1. AC=A1C1, BC=B1C1, C1BC – равнобедренный, ∠ACB=∠A1C1B1. 3) Луч C1C проходит вне угла А1С1В1. AC=A1C1, BC=B1C1, значит, ∠1 = ∠2, ∠1+∠3 = ∠2+∠4, ∠ACB=∠A1C1B1. Итак, AC=A1C1, BC=B1C1, ∠C=∠C1. Следовательно, треугольники ABC и A1B1C1 равны по первому признаку равенства треугольников.
3. В окружность вписан треугольник ABC так, что АВ - диаметр окружности. Найдите углы треугольника, если: а) ВС=134°
АВ - диаметр - > < C=90 < A=67 (вписанный угол) < B=180-90-67=23
Билет № 3
3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника.
Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12
S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4
3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника.
Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4.
В соответствии со свойством касательных, проведенных из одной точки к окружности
AM=AK CK=CN BM=BN
P=3+3+4+4+3+3=20