М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kazanji
Kazanji
17.04.2021 02:10 •  Геометрия

Для острого угла а найдите cos a, sin a, ctg а, если известно, что tg a = 5/12
12:58

👇
Ответ:
alex3942
alex3942
17.04.2021

смотри ниже

Объяснение:

tg=sin/cos;

т.к. sin и cos не могут быть больше единицы, то получаем, что sin(a)=0,05;

cos(a)=0,12;

\frac{0,05}{0,12} =\frac{5}{12}

ctg=cos/sin=1/tg=12/5.

4,7(3 оценок)
Открыть все ответы
Ответ:
ruzali4
ruzali4
17.04.2021
Если есть проблемы с отображением, смотрите снимок ответа, который приложен к нему.
====
Смотрите рисунок, приложенный к ответу.
Рассмотрим \triangle ABC. Из условия ясно, что он — прямоугольный (так как \angle C = 90^{\circ}). AB = 6 cm — гипотенуза, AC — искомый катет, tg \angle A = 2\sqrt{2}
Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть: tg \angle A = \frac{BC}{AC}
Отсюда: AC = \frac{BC}{tg \angle A}
Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
AB^2 = AC^2 + BC^2
Как мы выяснили чуть выше AC = \frac{BC}{tg \angle A}.
Заменяем и получаем:
AB^2 = (\frac{BC}{tg \angle A})^2 + BC^2
Немного поколдуем:
AB^2 = \frac{BC^2}{tg^2 \angle A} + BC^2 \\ 
AB^2 = \frac{BC^2 + BC^2 \cdot tg^2 \angle A}{tg^2 \angle A} \\ 
AB^2 = \frac{BC^2( 1 + tg^2 \angle A)}{tg^2 \angle A} \\
Отсюда найдем BC:
AB^2 = \frac{BC^2( 1 + tg^2 \angle A)}{tg^2 \angle A} \\ 
BC^2 = \frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A} \\ 
BC = \sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}
Теперь напомню зачем нам нужно было BC:
AC = \frac{BC}{tg \angle A}
Подставляем вместо BC новую подстановку:
AC = \frac{\sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}}{tg \angle A}
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
tg \angle A = 2\sqrt{2}, AB = 6 cm
Найдем, наконец, AC:
AC = \frac{\sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}}{tg \angle A} = \frac{\sqrt{\frac{(6 cm)^2 \cdot (2\sqrt{2})^2}{1+(2\sqrt{2})^2}}}{2\sqrt{2}} = \frac{\sqrt{\frac{36 cm^2 \cdot 8}{1+8}}}{2\sqrt{2}} =
= \frac{\sqrt{32 cm^2}}{2\sqrt{2}} = \sqrt{\frac{32}{2} cm^2} \cdot \frac{1}{2} = \sqrt{16 cm^2} \cdot \frac{1}{2} = 4 cm \cdot \frac{1}{2} = 2 cm
Это ответ.

Втреугольнике abc угол c равен 90° ab=6, tga=2 на корень из 2. найдите ac
Втреугольнике abc угол c равен 90° ab=6, tga=2 на корень из 2. найдите ac
4,4(22 оценок)
Ответ:
Артем15227897
Артем15227897
17.04.2021
А вот это ничего задачка :) жаль, что в праздники.
Прежде, чем начать, я выражаю благодарность Hrisula за предоставленный отличный рисунок к задаче.
1) Сразу надо понять, что AB II MN. Причем - еще до того, как используется, что MN - касательная к окружности (ABK) (я буду обозначать окружности в тексте тремя точками в скобках).
В самом деле, в точке K у окружностей есть общая касательная. Пусть это прямая KP, где Р - точка пересечения касательных MN и KP (то есть P лежит на продолжении MN)
∠NKP = ∠NMK; (оба измеряются половиной дуги KN окружности (MNK))
∠BAK = ∠BKP; ( оба измеряются половиной дуги BK окружности (ABK));
то есть ∠NMK = ∠BAK; что означает AB II MN.
2) Из этого следует подобие треугольников ABK и MNK. Но поскольку радиус описанной окружности у треугольника ABK в 2 раза меньше, то и стороны в 2 раза меньше, что означает, что AB - средняя линия треугольника MNK. Но это еще не всё :) - это еще и означает, что CK делится прямой AB пополам, то есть CL = LK;
(Любой, кто знаком с гомотетией, эти два пункта может доказать моментально - тут просто гомотетия с центром в точке K и коэффициентом 2. Отсюда и параллельность, и средняя линия.)
3) Теперь самое время вспомнить, что MN - касательная.
Обе касательные СP и KP к окружности (ABK) образуют одинаковые углы с хордой CK.
То есть ∠NCK = ∠PKC;
но ∠PKC = ∠NKP + ∠NKC;
∠PCK = ∠NMK +∠CKM;
если еще раз вспомнить, что ∠NKP = ∠NMK;
то ∠NKC = ∠CKM;
получилось, что CK = биссектриса угла AKB;
это означает, что AK/BK = AL/BL = 3/2; (разумеется, в подобном треугольнику ABK треугольнике MNK тоже такое же соотношение сторон)
4) Теперь надо "сложить" полученные условия для вписанного четырехугольника ACBK - что AL/BL = 3/2 = AK/BK; и CL = KL. Также AC = CВ, но это не понадобится (хотя в принципе и это можно было бы использовать). Главная задача - найти угол AKB. Полученных связей должно хватить.
Для краткости и понятности формул я теперь обозначу
γ = ∠AKB; a = BK; b = AK; l = KL = CL;
Пара треугольников KLB и AKC; имеет равные углы, так как KL - биссектриса угла AKB; и ∠ABK = ∠ACK; так как это вписанные углы, опирающиеся на дугу AK;
Поэтому KL/KB = KA/CK;
или 2*l^2 = ab;
Учитывая, что b = a*3/2; получается l = a*√3/2; (синус 60° тут возник случайно).
Если записать площадь треугольника ABK, как
ab*sin(γ)/2 = al*sin(γ/2)/2 + bl*sin(γ/2)/2; то
l = 2ab*cos(γ/2)/(a + b);
или, если подставить ранее найденные соотношения b = a*3/2; l = a*√3/2
a*√3/2 = 2a*(3a/2)*cos(γ/2)/(a + 3*a/2);
после сокращений получается значение косинуса половины угла AKB, откуда можно найти синус всего угла.
cos(γ/2) = 5√3/12; sin(γ/2) = √69/12; sin(γ) = 5√23/24;
(угол получился близким к прямому, но все-таки меньше :) примерно 87,6°)
5) Теперь, когда известен синус угла MKN; остается только применить теорему синусов. Радиус окружности (MKN) равен 2√23; поэтому
MN = 2*(2√23)*(5√23/24) = 5*23/6 = 115/6 = 19,1(6);
ну вот как-то так. Проверяйте...
(Между прочим, диаметр большей окружности 4√23 примерно равен 19,1833261)

2окружности касаются внутренним образом в точке к,причем меньшая проходит через центр большей. хорда
4,7(38 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ