Прямая ав ║ пл. scd, т.к. ав║cd. поэтому расстояние oт т. а до плоскости scd равно расстоянию от любой точки прямой ав до этой плоскости, в том числе и от точки м - середины отрезка ав, до плоскоти scd. δscd: проведём медиану sn , sn также высота δscd, sn⊥cd. δsmn - равнобедренный, sm=sn как медианы равных треугольников sab и scd. mh - высота δsmn , mh⊥sn . cd⊥sn и cd⊥mn , sn и mn пересекаются, принадлежат пл. smn ⇒ cd⊥ плоскости smn ⇒ cd⊥ mh , лежащей в пл. smn . mh - перпендикуляр к плоскости scd. значит, mh - расстояние от ав до пл. scd . точка о - центр основания авсd. δaos - прямоугольный:
Отрезки пересечения этой проведенной плокости с боковыми гранями пирамиды - это средние линии треугольников, образующих боковые ребра пирамиды. Значит эти отрезки параллельны ребрам основания пирамиды. По теореме о том, что если две пересекающиеся прямые одной плоскости параллельны двум перескающимся прямым другой плоскости, то такие плосоксти параллельных, получаем требуемое утверждение. Полученный в сечении треугольник подобен треугольнику, лежащему в основании пирамиды с коэффициентом подобия 1/2. Т.е. его площадь в 4 раза меньше площади основания, т.е. равна 16.
Потому-что вертикальные углы равны, тоисть между ними не должна быть разница.