Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
в)
S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>
S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD
21
Объяснение:
Проведём высоту BH. Средняя линия равна полусумме оснований: MN= дробь, числитель — AD плюс BC, знаменатель — 2 =5. Площадь трапеции равна произведению полусуммы оснований на высоту:
S_{ABCD}= дробь, числитель — AD плюс BC, знаменатель — 2 умножить на BH равносильно BH= дробь, числитель — 2S_{ABCD}, знаменатель — AD плюс BC равносильно BH=14.
Поскольку MN — средняя линия, MN\parallel AD, поэтому BK\perp KN. Отрезки AM и MB равны, AD\parallel MN\parallel BC, по теореме Фаллеса получаем, что BK=KH= дробь, числитель — BH, знаменатель — 2 =7. Найдём площадь трапеции BCNM:
S_{BCNM}= дробь, числитель — BC плюс MN, знаменатель — 2 умножить на BK= дробь, числитель — 1 плюс 5, знаменатель — 2 умножить на 7=21.
Квадрат высоты прямоугольного треугольника, проведенной из вершины прямого угла, равен произведению проекций катетов, то есть
BD^2 = AD * CD
Отсюда AD = BD^2 / CD = 24^2 / 18 = 32
Гипотенуза AC = AD + CD = 32 + 18 = 50
Из треугольника CDB по теореме Пифагора находим:
Из треугольника ABC по теореме Пифагора находим:
ответ: AB = 40; Cos A = 0,8