Имеем углы KAB и MCB. Для начала нужно доказать что эти углы равны, а если эти углы будут равны, то и стороны этих углов тоже будут равны. Первое свойство равнобедренного треугольника гласит: углы при основании равнобедренного треугольника равны. Проведём медиану BD, которая будет делить данный треугольник на равные части. Т.к. углы BAD и BCD равны, то углы KAB и BAD, будут вертикальные, а значит равны. Углы MCB и BCD тоже будут вертикальные, а значит тоже равны между собой. А т.к. углы при основании равны и оба из них имеют равные прилежащие углы, то и углы KAB и MCB, тоже равны!
Дано : ABCD - параллелограмм Пусть ∠A =∠C _острые углы ; AB =BD = 8 ; AC =8√2 .
S(ABCD) -?
Пусть O точка пересечения диагоналей AC и BD. S(ABCD) =4*S(∆ ABO) . * * *т.к. диагонали параллелограмма в точке пересечения делятся пополам* * * Треугольник ABO определен однозначно по трем сторонам и его площадь можно вычислить разными например, по формуле Герона: S(∆ABO) = √p( p-a)(p-b)(p-c) , где p=(a +b+c)/2 _полупериметр . * * *a =AO = AC/2 =4√2 , b=BO =BD/2 =4, c =AB=8 , p =6+2√2 * * * S(∆ABO)=√(6+2√2)(6-2√2)(2√2+2)(2√2-2)=4√(3+√2)(3-√2)(√2+1)(√2+1)=4√7. S(ABCD) =4*S(∆ ABO) =4*4√7=16√7 кв.ед.
Второй
Для параллелограмма : 2(AB² +AD²) =AC²+BD² ; 2(8² +BC²) = (8√2)² +8² ⇒ AD =4√2 . S(ABCD) =AD*h,а высоту h удобно определить из равнобедренного ΔABD . h = √(AB² -(AD/2)²) =√(8² -(2√2)²) =2√2 *√7.
1. Перше завдання неправильне, бо трикутник KMN... значить MN не може бути висотою.. 2. якщо трикутник рівнобедрений АС -основа, то АВ і ВС - бічні сторони, вони однакові. (АВ=ВС) значить АС більше за АВ і також ВС на 7.. Тобто: х - АВ х-ВС х+7-АС
Складемо рівняння: х+х+х+7=43 (бо периметр (тобто сума всіх сторін) 3х+7=43 3х=43-7 3х=36 х=36:3 х=13 - це АВ і ВС х+7=12+7=19 - це АС 3. висота у рівнобедреному трикутнику слугує ще й медіаною ( ділить сторіну навпіл) і бісектрисою(ділить кут навпіл).. Значить кут CDD1 = кут D :2 = 70°:2=35° CE= 2*CD1=2*13,1=26,2 дм..
AK = CM
Объяснение:
Имеем углы KAB и MCB. Для начала нужно доказать что эти углы равны, а если эти углы будут равны, то и стороны этих углов тоже будут равны. Первое свойство равнобедренного треугольника гласит: углы при основании равнобедренного треугольника равны. Проведём медиану BD, которая будет делить данный треугольник на равные части. Т.к. углы BAD и BCD равны, то углы KAB и BAD, будут вертикальные, а значит равны. Углы MCB и BCD тоже будут вертикальные, а значит тоже равны между собой. А т.к. углы при основании равны и оба из них имеют равные прилежащие углы, то и углы KAB и MCB, тоже равны!