Пусть в трапеции ABCD диагональ АС=20 см, АВ= CD=15 см.
Из прямоугольного Δ ACD по теореме Пифагора найдем нижнее основание трапеции AD=sqrt(400+225)=sqrt(625)=25.
Опустим высоту СН. Треугольники ACD и CDН подобны (один угол общий и прямоугольные). Из подобия треугольников находим
СН/CD =АС/AD → СН=(20*15)/25=12. Из этого же треугольника находим
DН=sqrt(225-144) =sqrt(81) =9.
Тогда верхнее основание трапеции равно 25-9-9=7.
S=(a+b)*h/2=(7+25)*12/2=32*6=192 (кв.см).
ответ: 192 кв. см.
Объяснение:
Радиус вписанной в треугольник окружности вычисляют по формуле:
r= √(р-а)(р-b)(р-с):р
Необходимо найти а, b, c
DA1=DC1=А1С1, так как Δ DA1C1 образован диагоналями равных граней куба, и потому является равносторонним.
Для нахождения радиуса окружности, вписанной в равносторонний треугольник, есть отдельная формула, которая вытекает из данной выше:
r=а:2√3
В данной формуле а - диагональ грани данного куба.
Каждая грань куба - квадрат. Диагональ квадрата
d=a√2
Подставим значение диагонали в формулу радиуса
r=(a√2):2√3 =4√2:2√3 =2√2:√3
r= (2√2·√3):√3·√3=(2√3*√2):3=⅓·2√6 см
r=⅓·2√6 см
Диагональ квадрата (диаметр круга) равен корень крадратный из 6 в квадрате + 6 в квадрате = 6*корень из 2
радиус =3*корень из 2
площадь круга = пи * радиус в квадрате = 3,14*(3*корень из 2 ) в квадрате.
Вычисляем:
3,14*9*2=56,52