Боковое ребро наклонной призмы равно 14 см и составляет с плоскостью основания угол 30º. Нужно найти высоту призмы.
-------------
Высота призмы - это перпендикуляр, опущенный из любой точки одного основания на плоскость другого основания.
Т.к. основания лежат в параллельных плоскостях, высота призмы равна расстоянию между плоскостями, содержащими её основания.
Обозначим вершины призмы ABCDA1B1C1D1 (см.рисунок в приложении)
Опустим из вершины А1 перпендикуляр А1Н на плоскость основания.
А1Н ⊥АН
∆ АА1Н - прямоугольный, его катет- высота призмы А1Н - противолежит углу 30º и равен половине гипотенузы АА1.
А1Н=14:2=7 см
Иначе: А1Н=АА1•sin 30º=14•1/2=7см
–––––––––
Примечание:
Высота призмы не обязательно совпадает с высотой боковой грани. Она совпадает с ней, только если призма прямая. В данном случае призма - наклонная.
120 см^2.
Объяснение:Обозначим через x длину второй стороны данного прямоугольного четырехугольника.
В формулировке условия к данному заданию сообщается, что длина первой стороны этого
В формулировке условия к данному заданию сообщается, что равна 15 см, а его диагональ составляет 17 см, следовательно, используя теорему Пифагора, можем составить следующее уравнение:
15^2 + x^2 = 17^2,
решая которое, получаем:
x^2 = 17^2 - 15^2;
x^2 = (17 - 15) * (17 + 15);
x^2 = 2 * 32;
x^2 = 64;
x = √64 = 8 см.
Зная длины сторон, находим площадь прямоугольника:
15 * 8 = 120 см^2.
ответ: 120 см^2.