обозначим меньший треугольник АВС, больший треугольник А1В1С1,
по условию эти треугольники подобны...
Р(АВС) : Р(А1В1С1) = 4:5 (это и есть коэффициент подобия)
известно:
периметры подобных фигур относятся как коэффициент подобия,
площади относятся как квадрат коэффициента подобия
(объемы относятся как куб коэфф.подобия)
S(АВС) : S(А1В1С1) = 16:25
или 25*S(АВС) = 16*S(А1В1С1)
S(А1В1С1) = (25/16)* S(АВС) АВС--меньший треугольник
S(А1В1С1) - S(АВС) = 45 (см²) (по условию)
(25/16)*S(АВС) - S(АВС) = 47 (см²)
S(АВС)*((25/16) - 1) = 45 (см²)
S(АВС)*(9/16) = 45
S(АВС) = 27*16/9 = 3*16 = 48 (см²)
Не уверена, что все правильно, но я пыталась
высота СД прямоугольного треугольника АВС, опущенная на гипотенузу АВ, равна 4 8/13 дм, проекция катетов на неё равна 11 1/13 дм. найти все стороны этого треугольника
CD=h =4 8/13 дм = 60 /13
AB=c -гипотенуза
AC (а), BC(b) – катеты
c1 и с2 - длины отрезков, на которые высота делит гипотенузу
с1=11 1/13 дм свойство прямоугольного треугольника
с2= h^2 /c1 = (60 /13)^2 / (144/13) = 25/13
гипотенуза c= с1+с2=144/13+25/13= 13 дм
дальше по теореме Пифагора
первый катет a^2=h^2 + c1^2 ; a=√( h^2 + c1^2)= √(60 /13)^2+(144/13)^2=12 дм
второй катет b^2=h^2 + c2^2 ; b=√( h^2 + c2^2)= √(60 /13)^2+(25/13)^2=5 дм по теореме Пифагора
первый катет a^2=h^2 + c1^2 ; a=√( h^2 + c1^2)= √(60 /13)^2+(144/13)^2=12 дм
высота, падающая на гипотенузу, связана с катетами соотношением
1/a^2 +1/b^2=1/h^2 - свойство прямоугольного треугольника
второй катет 1/b^2=1/h^2 - 1/a^2 ; b^2 = (ah)^2 /(a^2-h^2)=(12*60/13)^2 /(12^2-(60/13)^2)=25 ; b= 5 дм
по теореме Пифагора
гипотенуза с^2 = a^2 + b^2 ; c= √ (a^2 + b^2) =√ (12^2 + 5^2)= √169 = 13 дм ответ стороны треугольника 5, 12, 13