Линия пересечения плоскости AD₁C₁ и плоскости основания есть ребро параллелепипеда АВ.
Угол между плоскостью AD₁C₁ и плоскостью основания есть угол между плоскостью AD₁C₁ перпендикуляром к АВ, то есть высотой ромба. На рисунке обозначена как ВН.
ΔСВН - прямоугольный, с прямым углом Н, по условию острый угол ромба-основания равен 60⁰, отсюда, зная sin60⁰ находим высоту ромба ВН:
а)
Можно было вычислить и так, как мы находили АН во вчерашнем задании, через т. Пифагора, зная, что СН=а/2, как катет, лежащий против угла в 30⁰, но сегодня решаем так, чтобы показать разные пути решения.
б) Высоту параллелепипеда HH₁находим из прямоугольного ΔВН₁Н в котором угол Н прямой, угол В=60⁰, и зная значение tg60⁰:
в) Найти площадь боковой поверхности - самая простая часть этого задания:
, где и - периметр основания и высота пераллелепипеда соответственно.
г)
1)Так как в прямоугольнике диагонали равны, а диагонали точкой пересечения делятся пополам. то AO = BO(O = точка пересечения диагоналей). Значит, ΔBOA - равноберенный. найду углы при основании. <A = <C = (180° - 60°):2 = 60°. Значит, ΔBOA - равносторонний, OB = OA = AB = 5.
AC = 2AO = 5*2 = 10
2)Рассмотрю ΔABC,<B = 90°. По теореме Пифагора,
BC = √AC²-AB² = √100-25 = √75 = 5√3.
3)S = AB*BC;
S = 5*5√3 = 25√3