Т.к. биссектрисы углов равны, углы получаются равны, а если углы при основании равны, то (по определению) треугольник равнобедренный. ч.т.д.
Объяснение:
площадь трапеции
площадь трапеции равна произведению полусуммы ее оснований на высоту:
s = ((ad + bc) / 2) · bh,
где высота трапеции — это перпендикуляр, проведенный из любой точки одного из оснований к прямой, содержащей другое основание.
доказательство.

рассмотрим трапецию abcd с основаниями ad и bc, высотой bh и площадью s.
докажем, что s = ((ad + bc) / 2) · bh.
диагональ bd разделяет трапецию на два треугольника abd и bcd, поэтому s = sabd + sbcd. примем отрезки ad и bh за основание и высоту треугольника abd, а отрезки bcи dh1 за основание и высоту треугольника bcd. тогда
sabc = ad · bh / 2, sbcd = bc · dh1.
так как dh1 = bh, то sbcd = bc · bh / 2.
таким образом,
s = ad · bh / 2 + bc · bh = ((ad + bc) / 2) · bh.это можно только с доказательством
Это очень сложная задача, у неё есть геометрическое решение, но очень нудное.
Алгебраическое решение такое - если стороны a b c, и биссектрисы la и lb выходят из концов с (то есть это биссектрисы углов А и В), то
la = b*c - a^2*b*c/(b + c)^2; ()
lb = a*c - a*b^2*c/(a + c)^2;
Приравниваем, получаем
a*c - a*b^2*c/(a + c)^2 = b*c - a^2*b*c/(b + c)^2;
a - b = a*b*(b/(a + c)^2 - a/(b + c)^2);
Предположим, что a > b;
Тогда левая часть равенства положительна, а правая отрицательна, и получается противоречие. Поэтому a = b;
Предполагается, что вы умеете вычислять длину биссектрисы по сторонам треугольника, то есть знаете формулу ().