Вправильной четырехугольной пирамиде сторона основания равна 4 см, боковое ребро равно 5 см. найти площадь боковой поверхности пирамиды. нужно хорошее решение, а не ответ. если просто ответ - удалю.
На любой боковой грани проведём из вершины высоту. Поскольку любая боковая грань правильной пирамиды является равнобедренным треугольником, то высота будет также и медианой, то есть делит сторону основания на 2 равных отрезка, равных по 2 см.
По т. Пифагора находим длину высоты боковой грани:
h=√(5²-2²)=√21
Теперь находим площадь боковой грани:
Sб.г.=(4* √21)/2=2√21
Площадь боковой поверхности:
Sб.п.=4*2√21=8√21 см²
P.S. я думаю ты не забудешь отметить это как "Лучшее решение"?!.. ;))
Очень просто. Обозначим катеты как a и b. По теореме Пифагора a^2 + b^2 = 15^2 = 225. Как известно, площадь прямоугольного треугольника равна половине произведения катетов: a*b*0.5 = 54. Составляем систему из этих двух уравнений. Решаем подстановкой, допустим, возьмем катет a: a = 54/(0.5*b) = 54*2/b = 108/b. Далее подставляем в первое уравнение. Только не пугайся, числа большие: (108/b)^2 + b^2 = 225; 11664/b^2 + b^2 = 225. Умножаем обе части на b (в этом отношении мы можем делать что угодно, ведь длина катета - величина положительная) : 11664 + b^4 = 225*b^2. Переносим все в левую часть: b^4 - 225*b^2 + 11664 = 0. Заменим b^2 на x, тогда b^4 = x^2: x^2 - 225x +11664 = 0. Решаем квадратное уравнение: дискриминант равен (-225)^2 - 4*1*11664 = 50625 - 46656 = 3969 = 63^2. Далее находим корни: x1 = (-(-225) - 63)/2*1 = (225-63)/2 = 162/2 = 81. Т. е. x1 = 81, а значит b1 = корень квадратный из 81 = 9 (помним: длина катета - величина положительная) . Т. е. один катет мы уже нашли - он равен 9 см. Второй корень уравнения лучше не искать, второй катет можно найти из подстановки a = 108/b = 108/9 = 12. Все. Мы нашли катеты, они равны 9 см и 12 см соответственно. Задача решена. Можно сделать проверку: площадь равна 0.5*a*b = 0.5*12*9 = 54 см^2.
На любой боковой грани проведём из вершины высоту. Поскольку любая боковая грань правильной пирамиды является равнобедренным треугольником, то высота будет также и медианой, то есть делит сторону основания на 2 равных отрезка, равных по 2 см.
По т. Пифагора находим длину высоты боковой грани:
h=√(5²-2²)=√21
Теперь находим площадь боковой грани:
Sб.г.=(4* √21)/2=2√21
Площадь боковой поверхности:
Sб.п.=4*2√21=8√21 см²
P.S. я думаю ты не забудешь отметить это как "Лучшее решение"?!.. ;))