Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²
Відповідь:
84 см, 48см, 48 см
або 40 см, 70 см,70 см
Пояснення:
двивсь : якщо кути при основі рівні то по першій ознаці подібності трикутникі - ці трикутники подібні . Знаємо, що вони рівнобедренні і якщо сторони одного трикутника відносятся як 7:4, то і сторони другого трикутника відносятся як 7:4.
Тепер треба визначити які то сторони:
1 варіант: основа складає 7х, тоді бічні сторони 4х
Р=7х+4х+4х ,
180=15х
х=180:15
х=12
основа 7х=7*12=84(см)
бічні сторони 4х=4*12=48 (см)
2 варіант: основа складає 4х, бічні сторони складають 7х
тоді Р=4х+7х+7х
180=18х
х=180:18
х=10
основа 4х=4*10=40(см)
бічні сторони 7х=7*10=70(см)