№49: DK = 2
№50: MD = 16
Объяснение:
№49:
Т.к. ABCD - параллелограмм, AB || CD, то есть AB || CK. Тогда BK - секущая при параллельных прямых. Следовательно, ∠ABK=∠BKC, как накрест лежащие углы при параллельных прямых. Рассмотрим треугольник BCK: ∠CBK=∠BKC (∠ABK=∠CBK, по условию, а ∠ABK=∠BKC), следовательно, треугольник BCK равнобедренный. По свойству равнобедренного треугольника боковые стороны равны, то есть BC = CK = 8 (по условию). BC = CD + DK, CD = AB = 6 (по свойству параллелограмма), тогда DK = BC - CD = 8 - 6 = 2.
№50:
Т.к. ABCD - параллелограмм, BC || AD, то есть BC || MD. Тогда CM - секущая при параллельных прямых. Следовательно ∠BCM=∠CMA, как накрест лежащие углы при параллельных прямых.. Рассмотрим треугольник CAM: ∠CMA=∠MCA (∠MCA = ∠BCM по условию, а ∠BCM=∠CMD), следовательно, треугольник CAM равнобедренный. По свойству равнобедренного треугольника боковые стороны равны, то есть AM = AC = 10 (по условию). MD = AM + AD, BC = AD = 6 (по свойству параллелограмма), тогда MD = AM + AD = 10 + 6 = 16.
Высота в равнобедренном треугольнике делит его на два равных прмоугольных треугольника. При этом, высота разбивает основание не две равные части, и они равны 18/2=9 см. В треугольнике ВДС по теореме Пифагора
ВС=15.
Так как треугольник равнобедренный, то АС=ВС=15.
Радиус вписанной окружности -
, радиус описанной окружности - [tex
]R=\frac{abc}{4S}[/tex].
Периметр треугольника равен 15*2+18=48 см. Площадь треугольника по формуле Герона
, гдер - полупериметр, равный 48/2=24 см.
S=6*2*9=108 см^2
Теперь мы можем найти радиусы:
r=4.5 cм
R=9.375 см.
ответ: радиус вписанной окружности - 4,5см, радиус оаписанной окружности 9,375 см. ;)