Потрясающий вид вечернего Парижа невозможно описать словами. Приход ночи мало изменяет ритм жизни города, он лишь окрашивает его миллионами огней. Яркие и не очень, синие, красные, желтые и зеленые они наполняют сиянием все улочки и здания, придавая всему окружающему миру причудливые формы и цвета. И ни в коем случае, прогуливаясь по ночному городу, не проходите мимо самого знаменитого в целом мире кабаре. «Мулен Руж» - кабаре, которое уже более века радует и удивляет своих посетителей завораживающими и яркими шоу. Ночью башня словно окутана сиянием от миллионов светящихся лампочек.
"Париж — единственный в мире город, где можно отлично проводить время, ничем, по существу, не занимаясь"
- Триумфальная арка
А вам нравится город Париж?
Ромб- геометрическая фигура, у которой все стороны равны.
Допустим, ромб ABCD, диагональ AC равна любой из сторон.
Если AC равна хоть одной стороне, то равна и остальным по определению ромба. Значит, треугольник ABC- равносторонний по определению. В равностороннем треугольнике каждый из углов равен 60 градусам.
То есть: угол B=60 градусов, противолежащей ему угол D тоже равен 60 градусам по свойству.
По свойству ромба углы ромба диагональю делятся пополам. Отсюда, если у нас угол BCD, являющийся частью угла С и угол CAB, являющийся частью угла А равны каждый 60 градусам, то угол AиC=2*60=120 градусов каждый.
Две прямые лежат в одной плоскости, если смешанное произведение их направляющих векторов и третьего вектора, проведённого между двумя точками, лежащими на этих прямых, равно 0 . (При равенстве нулю смешанного произведения делаем вывод о компланарности трёх векторов.)
Из уравнения прямых можно выписать координаты направляющих векторов и координаты точек, лежащих на прямых .
\begin{gathered}l_1:\; \frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{-2}\; \; ,\; \; \vec{s}_1=(2,-1,-2)\; ,\; \; M_1(1,-2,0) l_2:\; \frac{x+1}{1}=\frac{y+11}{2}=\frac{z+6}{1}\; \; ,\; \; \vec{s}_2=(1,2,1 )\; \; ,\; \; M_2(-1,-11,-6)overline {M_2M_1}=(1+1,-2+11,0+6)=(2,9,6)(\overline {M_2M_1},\vec{s}_1,\vec{s}_2)= \left|\begin{array}{ccc}2&9&6\\2&-1&-2\\1&2&1\end{array}\right|= 2(-1+2)-9(2+2)+6(4+1)=0\end{gathered}
l
1
:
2
x−1
=
−1
y+2
=
−2
z
,
s
1
=(2,−1,−2),M
1
(1,−2,0)
l
2
:
1
x+1
=
2
y+11
=
1
z+6
,
s
2
=(1,2,1),M
2
(−1,−11,−6)
M
2
M
1
=(1+1,−2+11,0+6)=(2,9,6)
(
M
2
M
1
,
s
1
,
s
2
)=
∣
∣
∣
∣
∣
∣
∣
2
2
1
9
−1
2
6
−2
1
∣
∣
∣
∣
∣
∣
∣
=2(−1+2)−9(2+2)+6(4+1)=0