Расстояние от точки М (на биссектрисе) до стороны угла измеряется длиной перпендикуляра, опущенного из этой точки на сторону угла.
∠МАО=∠МВО=90°
∠АОМ=∠ВОМ, так как ОМ- биссектриса.
Соответственно
∠АМО=90°-∠АОМ
∠ВМО=90°-∠ВОМ- как острые углы прямоугольного треугольника
Можем утверждать, что ∠АМО=∠ВМО,
По второму признаку равенства треугольников: сторона и два прилежащие к не угла( ОМ- общая, ∠АМО=∠ВМО и ∠АОМ=∠ВОМ)
ΔАОМ=ΔВОМ. В равных треугольниках против соответственно равных углов лежат равные стороны, отсюда МА=МВ, что и требовалось доказать
трапеция ABCD угол A -прямой
BC=5
AD=17
СD=13
проводим высоту CH к AD и она отсекает на AD отрезок равный BC, т.е. AH=5
треугольник HCD-прямоугольный
HD=AD-AH=13
по теореме пифагора CH=5
S=(a+b)*h/2
S=55
вроде бы все правильно:)