Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей.
В данном случае плоскость, которой принадлежит ∆ АВС, проходит через АВ, параллельную другой плоскости и пересекает её, поэтому линия пересечения MN этих плоскостей параллельна АВ.
Поскольку плоскость, параллельная АВ, пересекает не сами стороны, а продолжения сторон АС и ВС, то она проходит вне треугольника. (см. рис. 1 приложения)
.Соответственные углы при пересечении параллельных прямых АВ и MN секущими АМ и ВN равны. ⇒ ∆ АВС~∆ СMN ( их углы равны). По условию MC : AC = 3 : 7, значит, ∆ MNC меньше сходственных сторон ∆ АВС, и МN пересекает плоскость, в которой лежит ∆ АВС, по другую сторону от т.С. (см. рисунок)
Примем коэффициент отношения МС:АС=а.
Тогда АС=7а, СМ=3а, а АМ=7а+3а=10 а.
Из подобия следует отношение:
СМ:АС=MN:AB
3a:7a=MN:7⇒
7 MN=21
MN=21:7=3 (ед. длины)
----------
Если MN проходит по ту же сторону от С, что АВ, то в условии ошибка и отношение МС:АС не может быть 3:7, но может быть МА:АС=3:7
х - меньшая сторона параллелограмма у - большая сторона параллелограмма Площадь параллелограмма = произведению его смежных сторон на синус угла между ними S=х*у*sin120=30√3 Получили уравнение с двумя переменными x*y=30√3:(√3/2)=60
ΔBК0 = ΔАL0 r = OB*sin 60 = √3 BK = BL = 2*cos 60 = 1 ΔАК0 = ΔАF0 AK = AF= x - 1 ΔCL0 = ΔCF0 CL = CF = y - 1 AC=AF+FC=x-1+y-1=x+y-2
В ΔАВС по теореме косинусов, квадрат стороны = сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними АС²=х²+у²-2ху*cos 120=x²+y²+xy
Получили второе уравнение с двумя неизвестными (x+y-2)²=x²+y²+xy xy-4x-4y+4=0 -4x-4y+64=0 x+y-16=0 xy=60 x²-16x+60=0 x1=6, Y1=10 x2=10, y2=6
Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей.
В данном случае плоскость, которой принадлежит ∆ АВС, проходит через АВ, параллельную другой плоскости и пересекает её, поэтому линия пересечения MN этих плоскостей параллельна АВ.
Поскольку плоскость, параллельная АВ, пересекает не сами стороны, а продолжения сторон АС и ВС, то она проходит вне треугольника. (см. рис. 1 приложения)
.Соответственные углы при пересечении параллельных прямых АВ и MN секущими АМ и ВN равны. ⇒ ∆ АВС~∆ СMN ( их углы равны). По условию MC : AC = 3 : 7, значит, ∆ MNC меньше сходственных сторон ∆ АВС, и МN пересекает плоскость, в которой лежит ∆ АВС, по другую сторону от т.С. (см. рисунок)
Примем коэффициент отношения МС:АС=а.
Тогда АС=7а, СМ=3а, а АМ=7а+3а=10 а.
Из подобия следует отношение:
СМ:АС=MN:AB
3a:7a=MN:7⇒
7 MN=21
MN=21:7=3 (ед. длины)
----------
Если MN проходит по ту же сторону от С, что АВ, то в условии ошибка и отношение МС:АС не может быть 3:7, но может быть МА:АС=3:7
Тогда МС:АС=3:7, откуда МС=10 а (см. рис. 2)⇒
MN:AB=MC:AC
MN:7=10:7⇒
MN=10 ( ед.длины)