Пусть угол при основаниии x, тогда угол при вершине x+48. Т.к. тругольник рвнобедренный, то и второй угол при основании x. Сумма угло тругольника 180, след. x+x+(x+48)=180 3x=180-48=132 x=132/3=44 Углы при основании равны 64, а при вершине 44+48=92
Объяснение: площадь трапеции - это произведение полусуммы ее оснований на высоту. Тогда:
Полусумма оснований=(84+30)÷2=114÷2=57см
Высота трапеции: проводим высоты и обозначаем точками КМ, тогда КМ= предположительно АВ(из условия задачи)=30см, а СК=DМ=(84-30)÷2=54÷2=27см. АС=ВD=(201-84-30)÷2=87÷2=43.5см. По теореме Пифагора находим высоту:
АК²=АС²-СК²
АК²=43,5²-27²
АК²=1892.25-729
АК²=1163,25
АК=34,5см. Значит площадь трапеции=57×34,5=1966,5м²
P.s. ответ выходит с остатком потому, что числа подобраны некорректно.
Длина высоты будет равна 4,8 единиц
Это решается очень просто.
Прямоугольные треугольники обладают таким свойством, что высота, опущенная на гипотенузу из прямого угла, делит треугольник на 2 ему подобных.
Из подобия одного треугольника к исходному и теоремы Пифагора - вытекает решение.
Синусы и косинусыТолько задачка, скорее всего, из такого класса, что синусы еще не проходили. Поэтому подобие - наиболее приемлемое должно быть. иначе учитель запалит решение.
Можно из подобия треугольников, можно изходить из косинуса/синуса одного из углов, но получается пропорция:
h/a=b/c, где a,b -катеты, с-гипотенуза, h-высота
h=ab/c=6*8/SQRT(6^2+8^2)=48/10=4.8
1. Берем каждый угол за х
х+х+х+48=180
3х=132
х=44
Т.к. углы при основании равны, то 2 угла по 44 гр.
2. 44+48=92-третий угол