Если на одной из двух прямых отложить несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки.
Пусть дан отрезок ВС.
От конца В отрезка начертить луч и на нем от В отметить через равные промежутки 5 точек. Из пятой точки провести прямую через т.С отрезка ВС и провести параллельно ей прямые, пересекающие отрезок ВС. Этими прямыми ВС будет разделен на 5 равных частей. Любые две соседние части равны 2/5 исходного отрезка ВС.
1) Так как M1B1 || BB1 значит можно провести плоскость β (по теореме, через параллельные прямые можно провести плоскость, и при том только одну). М є ММ1, М є АВ => M є β В є ВВ1, В є АВ => B є β
Следовательно, отрезок АВ будет лежать в β плоскости, потому как уже А и В точки его принадлежат плоскости. α пересекает β по M1B1, AB є β => A, M1, B1 лежат на общей прямой пересечения плоскостей α и β
2) ΔАММ1 ~ ΔABB1 по 3ему признаку (за 3мя углами). Следовательно, выполняется следующее отношение:
Если на одной из двух прямых отложить несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки.
Пусть дан отрезок ВС.
От конца В отрезка начертить луч и на нем от В отметить через равные промежутки 5 точек. Из пятой точки провести прямую через т.С отрезка ВС и провести параллельно ей прямые, пересекающие отрезок ВС. Этими прямыми ВС будет разделен на 5 равных частей. Любые две соседние части равны 2/5 исходного отрезка ВС.