Треугольник MOE прямоугольный (по условию). OM перпендикулярно OE, Площадь треугольника S=1/2*OM*OE. OM=2/3*MP=2/3*12=8, OE=1/3*NE=1/3*15=5 (т к медианы точкой пересечения делятся в отношении 2:1 считая от вершины). Тогда S= 1/2*8*5=20 кв см.



o2z1qpv и 197 других пользователей посчитали ответ
Пусть E - точка пересечения прямых BC и AD. Если Е не совпадает с D (на чертеже изображен как раз один из таких случаев), то прямоугольные треугольники BED и CED равны по гипотенузе и катету: BD=CD по условию, а ED - общий катет. Отсюда ∠BDE=∠CDE, а т.к. точки A,D,E лежат на одной прямой, то и ∠BDA=∠CDA. (Заметим, что если Е совпала с D, то равенство углов ∠BDA и ∠CDA следует сразу из условия, т.к. BC⊥AD). Далее, треугольники BDA и CDA равны по сторонам и углу между ними (AD - общая, BD=CD по условию, ∠BDA=∠CDA доказали выше), а значит, AB=AC, что и требовалось.
1. Рисуем ∠ B =45°. Откладываем отрезки ВА=3 см и АD=7 cм Через точки В и D проводим паралелльные прямые до пересечения в точке C 2. Рисуем прямой угол A Откладываем на сторонах угла отрезки равные 4 и 8 см АВ=4 см ВD= 8 cм Проводим перпендикуляр из точки D. Строим отрезок DC= 4 cм Соединяем В и С
3, Проводим две взаимно перпендикулярные прямые. Диагонали ромба взаимно перпендикулярны и делятся в точке пересечения пополам. Откладываем от точки пересечения отрезки 4 и 4 влево и вправо и 2 и 2 вверх и вниз. См. рисунок
Треугольник MOE прямоугольный (по условию). OM перпендикулярно OE, Площадь треугольника S=1/2*OM*OE. OM=2/3*MP=2/3*12=8, OE=1/3*NE=1/3*15=5 (т к медианы точкой пересечения делятся в отношении 2:1 считая от вершины). Тогда S= 1/2*8*5=20 кв см.



o2z1qpv и 197 других пользователей посчитали ответ
Объяснение:
Ну может вот такой пример?