Треугольник, его свойства и признаки. Урок 3 На рисунке сторона FE равностороннего треугольника EFG продолжена. Угол KEG больше угла на 60°. Найди углы треугольника EFG. ШИН ДИ F F E K к G С FEG КАК ЭТО ДЕЛАТЬ
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
Задача 1. S=1/2*СD*СЕ*sin(C)=(1/2)*6*8*√(3)/2=12*√(3). Задача 2. На теорему косинусов: 8^2=6^2+7^2-2*6*7*cos(a). cos(a)=(36+49-64)/84=0,25 Задача 3. Есть формула непосредственного вычисления, но я ее не помню, а где-то искать - лень. Но я могу дать решение, пусть и не самое оптимальное. длины векторов а и в соответственно равны: а=√((-4)^2+5^2))=√(41), b=√(5^2+(-4)^2))=√(41), расстояние между концами векторов равно √((-4-5)^2+(5+4)^2)=√(162). Вновь применяем теорему косинусов: (√(162))^2=(√(41))^2+(√(41))^2-2*√(41)*√(41)*cos(a), cos(a)=(41+41-162)/(2*41)=(-40/41). Задача 4. Опять на теорему косинусов. PK^2=PM^2+MK^2-2*PM*MK*cos(120°), PK=√(3^2+4^2-2*3*4*(-1/2))=√(9+16+12)=√(37). Площадь треугольника S=(1/2)*PM*MK*sin(120°)=(1/2)*3*4*√(3)/2=3*√(3). С другой стороны, S=PK*MN, откуда MN=S/PK=3*√(3)/√(37)=√(27/37).
FEG=180(но это не точно)
EFG=60
EGF =60