См. Объяснение
Объяснение:
Задача 1
Найдите площадь трапеции,
у которой средняя линия равна 10 см, боковая сторона 6 см и составляет с одним из оснований угол 30°.
Решение
1) Находим высоту трапеции. Она равна произведению боковой стороны на синус углу 30°:
h = 6 · sin 30° = 6 · 0,5 = 3 см
2) Площадь трапеции равна произведению средней линии на высоту:
S = 10 · 3 = 30 cм²
ответ: 30 cм²
Задача 2
Диагонали выпуклого четырехугольника равны 3 см и 4 см. Какую наибольшую площадь может иметь этот четырехугольник?
Решение
Максимальной площадь четырёхугольника будет тогда, когда диагонали будут пересекаться под углом 90°.
Это следует из того, что при пересечении диагоналей образуется 4 треугольника, площадь каждого из которых рассчитывается как половина произведения сторон на синус угла между ними, а так как максимальное значение синуса угла равно 1, то это значит что угол между диагоналями должен быть 90°.
Пусть диагонали делятся в точке пересечения на отрезки:
х и (3-х),
у и (4-у).
Тогда площади полученных 4-х прямоугольных треугольников, образованных пересечением диагоналей, будут соответственно равны:
S₁= ху/2,
S₂=(3-х)у/2
S₃=(4-у)(3-х)/2
S₄=(4-у)х/2
Сложив эти площади, получим:
S = S₁+S₂+S₃+S₄ = (ху+3у-ху+12-4х-3у+ху+4х-ху):2 = 12:2 = 6 см²
Следовательно, наибольшая площадь S выпуклого четырёхугольника с диагоналями 3 см и 4 см равна 6 см².
ответ: 6 см².
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².