Сначала нужно найти АС и СВ (Так как это катеты соответственно прилежащий и противолежащий углу А) по Теореме Пифагора: (3х)^2+(5x)^2=34^2; 9x^2+25x^2=34^2. Значит, 34х^2 = 34^2. Значит единица измерения сторон треугольника равна \sqrt{34}.
Аналогично найдем, единицу измерения треугольника АСH (3y)^2+(5y)^2=(5sqrt{34})^2
9y^2+25y^2=25*34; 34y^2=25*34; y^2=25; y=5. CH=3y, AH = 5y (Так как это катеты соответственно противолежащий и прилежащий углу А),то CH=15, AH=25. Так как HB = AB - AH, то HB = 34 - 25 = 9.
Т.к. площадь квадрата ABCD равна 1 кв.см, то сторона квадрата равна 1 см AN=NB=1/2 AB=0.5 cm AM=3/4AD=0.75 cm MD=AD-AM=1-0.75=0.25 cm ΔNBC и ΔCDM - прямоугольные треугольники Площадь прямоугольного треугольника S=1/2ab, где a и b - катеты NB и BC - катеты ΔNBC SΔNBC=1/2*0.5*1=0.25 (кв.см) CD и MD - катеты ΔCDM SΔCDM=1/2*1*0.25=0.125 (кв.см)
Площадь четырехугольника ANCM равна площадь квадрата ABCD минус площади треугольников ΔNBC и ΔCDM S ANCM= S ABCD- SΔNBC-SΔCDM S ANCM=1-0.25-0.125=0.625(кв.см)
ОТВЕТ: площадь четырехугольникаANCM равна 0,625 кв.см
Сначала нужно найти АС и СВ (Так как это катеты соответственно прилежащий и противолежащий углу А) по Теореме Пифагора: (3х)^2+(5x)^2=34^2; 9x^2+25x^2=34^2. Значит, 34х^2 = 34^2. Значит единица измерения сторон треугольника равна \sqrt{34}.
Аналогично найдем, единицу измерения треугольника АСH (3y)^2+(5y)^2=(5sqrt{34})^2
9y^2+25y^2=25*34; 34y^2=25*34; y^2=25; y=5. CH=3y, AH = 5y (Так как это катеты соответственно противолежащий и прилежащий углу А),то CH=15, AH=25. Так как HB = AB - AH, то HB = 34 - 25 = 9.
ответ: BH = 9.