X - градусов составляет одна часть дуги 6х - градусов - первая дуга 7х - градусов - вторая дуга 11х - градусов - третья дуга В сумме, три дуги образуют полную окружность, градусная мера которой 360, с.у. 6х+7х+11х=360 24х=360 х=15 (град) - одна часть 6х=6*15=90 - градусов - первая дуга 7х=7*15=105 - градусов - вторая дуга 11х=11*15=165 - градусов - третья дуга
Градусная мера ВПИСАННОГО угла = половине градусной меры дуги, на которую он (угол) оприрается своими сторонами 90:2=45 - градусов первый угол 105:2=52,5 - градусов второй угол 165:2=82,5 - градусов третий угол ответ: 45; 52,5; 82.5
Опишем окружность около треугольника АВС. Диаметр этой окружности лежит вне этого треугольника, так как угол <B - тупой (дано). <MCL=90°, как угол между биссектрисами двух смежных углов (свойство). Значит <CLM=45° (так как CL=CM - дано). Тогда <LAС+<LCA=45° (так как внешний угол ВLC равен сумме двух внутренних, не смежных с ним). Умножим на 2 обе части этого уравнения: 2<LAK+2<LCA=90° или 2<BAC+<BCA=90°. Но <BAC+<BCA=180°-<ABC тогда <BAC+180°-<ABC=90° или <BАC=<ABC-90°. Проведем через точку А диаметр АК описанной окружности. Тогда <АСК=90°, как угол, опирающийся на диаметр. <AКC=180°-<AВC, так как опираются на одну хорду. <KAC=180°-<ACK-<AKC или <KAC=180°-90°-180°+<AВC или <KAC=<AВC-90°. То есть <KAC=<BАC. Это вписанные углы и дуги ВС и КС равны. Отсюда КС=ВС=5, как хорды, стягивающие равные дуги. Тогда по Пифагору AK=√(АС²+СК²) или АК=√(12²+5²)=13. Это диаметр. Значит радиус описанной окружности равен 6,5. ответ: R=6,5.
6х - градусов - первая дуга
7х - градусов - вторая дуга
11х - градусов - третья дуга
В сумме, три дуги образуют полную окружность, градусная мера которой 360, с.у.
6х+7х+11х=360
24х=360
х=15 (град) - одна часть
6х=6*15=90 - градусов - первая дуга
7х=7*15=105 - градусов - вторая дуга
11х=11*15=165 - градусов - третья дуга
Градусная мера ВПИСАННОГО угла = половине градусной меры дуги, на которую он (угол) оприрается своими сторонами
90:2=45 - градусов первый угол
105:2=52,5 - градусов второй угол
165:2=82,5 - градусов третий угол
ответ: 45; 52,5; 82.5