Объяснение:
В условии опечатка: надо доказать, что ΔBDC равнобедренный.
ΔBDC равнобедренный,
AD < DC.
Пошаговое объяснение:
а) Зная, что сумма углов треугольника 180°, найдем угол АВС:
∠АВС = 180° - (∠А + ∠С) = 180° - 110° = 70°
Так как BD биссектриса угла АВС, то
∠ABD = ∠CBD = 70°/2 = 35°.
В треугольнике BDC два угла равны, значит он равнобедренный по признаку равнобедренного треугольника.
б) В треугольнике напротив меньшего угла лежит меньшая сторона.
В ΔABD AD < BD, так как AD лежит напротив угла 35°, а BD напротив угла в 75°.
Но BD = DC (доказано выше), тогда
AD < DC
центр (9;-1;0) R=7
(немного не понятно в первой скобкие (х-9)или
(х+9),если (+),то первая воордината по оси х будет с о знаком (-) .просто (х 9) не должно быть.)
2)А (-3;0;4) R =8
(x+3)^2+y^2+(z-4)^2=64
3)(x-4)^2+(y+6)^2+z^2=9 A (4;-3;1)
подставим значения точки А х=4,у=-3,z=1 в уравнение сферы
(4-4)^2+(-3+6)^2+1^2=9
0+9+1=9 это не верно,значит точка А не лежит на сфере.10>9 значит точка А лежит за сферой.
4)х^2+у^2+ z^2+2z -2x=7
(x^2-2x)+y^2+(z^2+2z)-7==0
(x^2-2x+1)+y^2+(z^2+2z+1)-9=0
(x-1)^2+y^2+(z+1)^2=9
центр (1;0-1) R=3