Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
2. D = 9 -8a, не имеет корней при а > одной целой одной девятой
3. 72 / 18 = 4(м) - 1 часть
стороны равны: 12м, 24м, 36м
4. по теореме пифагора найдём МN и МК. МN^2 = MK^2 = OM^2 - R^2 = 169 - 25 = 144
MK = MN = 12
5. по теореме пифагора найдём неизвестный катет: 17^2 - 15^2 = 289 - 225 = 64
ответ: 8
1. Задача. пусть X(ч) время работы одной машинистки
тогда (Х+12) время работы другой машинистки
1 - вся работа, получаем:
(1/х + 1/(x + 12)) = 1/8
решим уравнение.
8x +96 + 8x = x^2 + 12x
-x^2 - 12x + 16x + 96 = 0
x^2 - 4x - 96 = 0
D = 16 + 384 = 400
x1 = (4 + 20)/2 = 12
x2 = -8 - по условию задачи производительность не может быть отрицательной
ответ 12ч и 24ч
Успехов в учёбе!
Аксиоматический метод — это такой построения математической теории, при котором в основу кладутся некоторые положения, принимаемые без доказательства (аксиомы), а все остальные выводятся из них чисто логическим путем.
Изучаемая в школе геометрия является иллюстрацией метода построения теории, которая получила название аксиоматического метода.