ответ:Это равнобедренный прямоугольный треугольник,т к
<Е=45+45=90 градусов;
ЕG-биссектриса(делит угол Е на два равных угла),а также медиана(делит основание DF на две равные части
DG=GF=3,8)
Тогда можно сказать,что ЕG и высота треугольника DFE,треугольники DGE и FGE равны между собой по первому признаку равенства прямоугольных треугольников-по двум катетам
DG=GF;GE-общая сторона
Исходя из равенства треугольников,
<D=<F,а это углы при основании равнобедренного треугольника,поэтому
DE=EF
У равностороннего треугольника все углы по 60 градусов,и все стороны равны между собой
В разностороннем треугольнике и углы разной градусной меры и стороны не равны между собой
Высота, проведенная из вершины, противолежащей основанию, по Пифагору равна: √(25-9) = 4. Итак, это меньшая высота. Вторая высота делит наш треугольник на два прямоугольных с общим катетом h - искомой высотой. По Пифагору: h² = 25 - x² и h² = 36 - (5-x)², где х - часть боковой стороны, отсекаемой высотой h, считая от вершины, противоположной основанию. Приравниваем оба уравнения и получаем: 25 - x² = 36 - (5-x)², откуда 14=10х и х=1,4. тогда искомая высота по Пифагору: √(25-1,4²) =√23,04 = 4,8.
ответ:Это равнобедренный прямоугольный треугольник,т к
<Е=45+45=90 градусов;
ЕG-биссектриса(делит угол Е на два равных угла),а также медиана(делит основание DF на две равные части
DG=GF=3,8)
Тогда можно сказать,что ЕG и высота треугольника DFE,треугольники DGE и FGE равны между собой по первому признаку равенства прямоугольных треугольников-по двум катетам
DG=GF;GE-общая сторона
Исходя из равенства треугольников,
<D=<F,а это углы при основании равнобедренного треугольника,поэтому
DE=EF
У равностороннего треугольника все углы по 60 градусов,и все стороны равны между собой
В разностороннем треугольнике и углы разной градусной меры и стороны не равны между собой
Объяснение: