Объяснение: проведенные отрезки - это биссектрисы данного треугольника (центр вписанной окружности - точка пересечения биссектрис треугольника);
получившиеся треугольники имеют равные высоты - это радиус вписанной окружности (любая точка биссектрисы угла равноудалена от сторон угла; радиус, проведенный в точку касания перпендикулярен касательной)
площади треугольников, имеющих равные высоты относятся как основания; получим отношения сторон треугольника (для определенности обозначим сторону (а) у треугольника с площадью 30; сторона (b) у треугольника площадью 28; (с) для площади 26):
а/b = 30/28 = 15/14
a/c = 30/26 = 15/13
b/c = 28/26 = 14/13
можно записать три стороны:
a = 15c/13; b = 14c/13 и с.
площадь всего треугольника = 30+28+26 = 84 и она связана со сторонами по формуле Герона)
Посмотрите решение, по возможности перепроверьте вычисления: 1. По т. Пифагора можно найти половину стороны основания, так как боковое ребро, апофема и половина стороны основания образуют прямоугольный треугольник: √(5²-3²)=4. Тогда сторона основания равна 8 см. 2. Площадь боковой поверхности состоит из утроенной площади боковой грани (равнобедренный треугольник с основанием 8 см, высотой 3 см.), то есть Пл_боковой_поверхности=3*0,5*8*3=36 см². 3.Высота пирамиды соединяет вершину вне основания и центр описанной окружности, которая описана вокруг треугольника в основании. Зная, что сторона правильного Δ-ка равна 8 см., можно найти радиус описанной окружности: Радиус_описанной окружности=2/3 *8*sin60°=8/√3. Тогда высота пирамиды находится из прямоугольного Δ-ка, образованного высотой пирамиды, радиусом описанной окружности основания и боковым ребром (последние равны 8/√3 и 5 см.): √(25-(64/3))=√11/3 4. V=1/3 *SΔ*h; V=1/3 *1/2 *8²*sin60°*√11/3
ответ: стороны треугольника 13; 14; 15
Объяснение: проведенные отрезки - это биссектрисы данного треугольника (центр вписанной окружности - точка пересечения биссектрис треугольника);
получившиеся треугольники имеют равные высоты - это радиус вписанной окружности (любая точка биссектрисы угла равноудалена от сторон угла; радиус, проведенный в точку касания перпендикулярен касательной)
площади треугольников, имеющих равные высоты относятся как основания; получим отношения сторон треугольника (для определенности обозначим сторону (а) у треугольника с площадью 30; сторона (b) у треугольника площадью 28; (с) для площади 26):
а/b = 30/28 = 15/14
a/c = 30/26 = 15/13
b/c = 28/26 = 14/13
можно записать три стороны:
a = 15c/13; b = 14c/13 и с.
площадь всего треугольника = 30+28+26 = 84 и она связана со сторонами по формуле Герона)
полупериметр = ((15/13)+(14/13)+1)*(c/2) = 21c/13
84 = корень из((21с/13)*(6c/13)*(7c/13)*(8c/13))
84 = 7*3*4*c^2/169
c^2 = 169
c = 13
b = 14
a = 15