В нашем случае образуется 8 углов из которых одна половина равны между собой и вторая половина также равны между собой.
Так ∠1=∠4=∠5=∠8, как накрест лежащие и равны 150*.
А ∠2=∠3=∠6=∠7.
Сумма углов 1 и 2 равен 180*, т.е. получается развернутый угол, а углы смежные. Отсюда найдем ∠2=180*-150*=30*.
б) один из углов на 70* больше другого. обозначим один из углов через х, тогда другой, смежный ему, равен х+70. В сумме они дают 180*.Составим уравнение и найдем х:
х+х+70=180*;
2х+70=180*;
2х=180-70;
2х=110;
х=55* - один из углов (меньший).
55*+70*=125* - больший угол.
Итак, одна половина углов равна 55*, а другая - 125* (смотри предыдущее задание).
Рассмотрим параллелограмм АВСД (см. рисунок) стороны которого: АВ=32 см, ВС=40 см. Из угла АВС проведем перпендикуляр ВЕ и расстояние между вершинам тупых углов ВД Рассмотрим треугольник АВЕ: Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи) По теореме Пифагора найдем второй катет (высоту): ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см. Теперь рассмотрим треугольник BДE: ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов По теореме Пифагора найдем ВД: ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см. ответ: расстояние между вершинами тупых углов равно 8√21 см
ответ: а) 150* и 30*; б) 55* и 125*
Объяснение:
В нашем случае образуется 8 углов из которых одна половина равны между собой и вторая половина также равны между собой.
Так ∠1=∠4=∠5=∠8, как накрест лежащие и равны 150*.
А ∠2=∠3=∠6=∠7.
Сумма углов 1 и 2 равен 180*, т.е. получается развернутый угол, а углы смежные. Отсюда найдем ∠2=180*-150*=30*.
б) один из углов на 70* больше другого. обозначим один из углов через х, тогда другой, смежный ему, равен х+70. В сумме они дают 180*.Составим уравнение и найдем х:
х+х+70=180*;
2х+70=180*;
2х=180-70;
2х=110;
х=55* - один из углов (меньший).
55*+70*=125* - больший угол.
Итак, одна половина углов равна 55*, а другая - 125* (смотри предыдущее задание).
Как-то так... :)) Удачи!