Объяснение:
Сначала найдем стороны параллелограмма
( 5 + 6 ) * 2 = 22 части приходится на все четыре стороны параллелограмма
44 \ 22 = 2 см - приходится на одну часть
2 * 5 = 10 см - ширина параллелограмма
2 * 6 = 12 см - длина параллелограмма
cos A = АН \ АВ = АН : 10
Составляем пропорцию и решаем ее
3 : 5
АН : 10
АН = 3 * 10 \ 5 = 6 см
По теореме Пифагора находим высоту - ВН
ВН = √АВ² - АН² = √100 - 36 =√64 = 8 см
Для нахождения площади трапеции нам нужно знать длину обоих оснований
НD = 12 - 6 = 6 см длина нижнего основания трапеции
( ВС + НD) \ 2 * ВН = ( 12 + 6 ) \ 2 * 8 = 72 см² - площадь трапеции НВСD
ответ: №5. 1) Cos(m^n) = 16/65 ≈ 0,246.
2) x = |6|. 3) x = -5/6.
№5. |BM| = √142/2.
Объяснение:
№5.
1) Cos(m^n) = (Xm·Xn+YmYn)/(|m|·|n|) (формула).
|m| = √((-4)²+3²) = 5; |n| = √(5²+12²) = 13. =>
Cos(m^n) = (-4·5+3·12)/(5·13) = 16/65 ≈ 0,246.
2) Два вектора коллинеарны, если отношения их координат равны.
Xm/Xa = -4/2 = -2. Ym/Ya = 3/x = -2 => x = |6|.
3) Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
Xn·Xa + Yn·Ya = 5·2 + 12·x = 0 => x = -5/6.
№6.
Вектор BM = BD/2.
Вектор BD = AD - AB.
Вектор AD = BC.
Модуль разности векторов AВ и AD находится по теореме косинусов:
|BD| =√(АВ|² +|АD|² - (1/2)·AB·AD·Cos(АB^АD).
|BD| =√(|4|² +|6√3|² - (1/2)·4·6√3·Cos(180-30).
|BD| =√(16 +108 - (1/2)·4·6√3·(-√3/2)) = √142. =>
|BM| = √142/2