Дано: АВС- равнобедренный треугольник.
АМ- медиана.(18.4)
Р треугольника АВМ=79.2
Найти: Р треугольника АВС
АМ является и бессектрисой и медианой и высотой (свойства равнобедренного треугольника.)
Следовательно: Угол А делиться пополам (так как АМ является бессектрисой.) Следовательно эти половинки ровны.
АМ-общая сторона.
ВА=АС (по условию так как треугольник АВС равнобедренный.)
Следовательно треугольники АВМ=АМС (по 1 признаку.)
Следовательно Р треугольника АВС равен.
(79.2-18.4)• 2
Все готово
Объяснение:
Это полная цитата из личной переписки от 09.8.2012.23:13
В первой задаче есть красивое и технически очень простое решение. Высота к основанию АН (Н - середина ВС), на которой лежат центры описанной (R = 25) и вписанной (расстояние от А до центра О вписанной окружности d = 20) окружностей, продлевается до пересечения с описанной окружностью в точке К. Вершина В соединяется с К и О. Очень просто увидеть, что треугольник ВОК равнобедренный - угол ВОК = угол АВО + угол ВАО, угол ОВК = угол ОВС + угол СВК, но ВО - биссектриса, угол ОВС = угол ОВА, угол АВК прямой (вписанный угол, опирается на диаметр АК) угол СВК = угол ВАК (стороны углов попарно перпендикулярны). Поэтому угол ОВК = угол ВОК, ВК = КО = 2R - d (очень важно - это верно для любых возможных значений R и d) .
2R - d = 50 - 20 = 30. Ясно, что АВК - "египетский" тр-к со сторонами (30, 40, 50), то есть АВ = ВС = 40, ну, половина основания ВН, высота АН и боковая сторона АВ образуют тр-к подобный АВК, то есть тоже "египетский", и ВН = АВ*3/5 = 24, ВС = 48.
Периметр 2*40+48 = 128.
Я не очень понял, зачем публиковать уже решенную задачу. Может, я где ошибся? Может быть, не понятно, что точка пересечения медиатрисс (срединных перпендикуляров) - это центр описанной окружности, и расстояние от вершины до этой точки равно радиусу описанной окружности? Или есть проблема с точкой пересечения биссектрис?
Еще раз повторяю СМЫСЛ решения. Я ДОКАЗАЛ, что для любого равнобедренного треугольника ЕСЛИ через концы основания и центр ВПИСАННОЙ окружности провести окружность (построить по трем точкам), то центр её будет лежать на ОПИСАННОЙ окружности. Причем на другом конце диаметра, одним концом которого является вершина, противолежащая основанию.
Все это я доказал, и это очень просто, и сводит все вычисления к простой арифметике.
Площадь квадрата (основания) ABCD равна AD^2=a^2
Площадь грани ADM(площадь прямоугольного треугольника ) равна 1\2*AD*DM=1\2*a^2.
Площадь грани СDM(площадь прямоугольного треугольника ) равна 1)1\2*СD*DM=1\2*a^2.
MD перпендикулярно AD, AD перпендикулярно AB, значит MB перпендикулярно AB
По теореме Пифагора : MB=корень(AD^2+MD^2) =корень(а^2+а^2)=а*корень(2)
По теореме Пифагора : MC=корень(CD^2+MD^2) =корень(а^2+а^2)=а*корень(2)
Площадь грани BСM(площадь прямоугольного треугольника ) равна
1\2*BD*DM=корень(2)\2*a^2.
MD перпендикулярно CD, CD перпендикулярно BC, значит MC перпендикулярно BC
Площадь грани BDM(площадь прямоугольного треугольника ) равна 1\2*BC*MC=корень(2)\2*a^2.
Площадь поврехности пирамиды MABCD равна = площадь основания ABCD+площадь грани ADM+ +площадь грани СDM+площадь грани ABM+площадь грани BCM= a^2+1\2*a^2+1\2*a^2+
+ корень(2)\2*a^2+ корень(2)\2*a^2=a^2*(2+корень(2)).
ответ: a^2*(2+корень(2))