Поскольку DK - биссектриса угла D, то угол ADK равен углу DKA (который равен CDK), и треугольник ADK равнобедренный, AD = AK; а поскольку АK = KВ; то можно обозначить AK = KB = AD = a; Точно так же легко показать, что BMC равнобедренный треугольник, и BC = CM = MD = b; считаем, что a > b и заданный МЕНЬШИЙ угол при основании - это угол DAB; (это взаимосвязанные утверждения, потом невозможность другого выбора будет видна из треугольника AEB, в котором из b < a следует ЕВ < AE; а значить и угол напротив меньше) Периметр равен 3*(a + b) = 30; поэтому a + b = 10; Если продлить AD, BC и KM до пересечения в точке Е (все три прямые пересекутся в одной точке, и KЕ - медиана АВЕ и подобного ему треугольника CDE), и обозначить DE = y; CE = x; то из подобия EDM и EAK следует y/b = (y + a)/a; Аналогично из подобия EMC и EKB x/b = (x + b)/a; Кроме того, очевидно и то ,что y/x = a/b; (это НЕ независимое соотношение) Получается y = a*b/(a - b); x = b^2/(a - b); Третья сторона треугольника EDC равна 2*b, а косинус угла EDC равен 3/4; Если применить теорему косинусов, то x^2 = y^2 + (2*b)^2 - 2*(2*b)*y*(3/4); или (b^2/(a - b))^2 = (a*b)^2/(a - b)^2 + 4*b^2 - 3*a*b^2/(a - b); b^4 = a^2*(a - b)^2 + 4*b^2*(a - b)^2 - 3*a*b^2*(a - b); (a^2 - b^2) + 4*(a - b)^2 - 3*a*(b - a) = 0; a + b + 4*a - 4*b - 3*a = 0; 2*a = 3*b; поскольку a + b = 10; то a = 6; b = 4; Трапеция имеет боковые стороны 4 и 6 и основания 12 и 8. Если провести теперь DQ II MK, то QK = DM = 4, AK = 6; то есть AQ = 2; отсюда DQ^2 = 6^2 + 2^2 - 2*6*2*(3/4) = 22; ясно, что DQ = KM; поэтому KM = √22;
8,6
11,4
8,6
11,4
Объяснение:
1) уг1=уг2 (как накрест лежащие при парал );
уг1=уг3 (тк биссектриса );
значит уг2=уг3 ⇒ треуг АВЕ - равнобед, тогда АВ=ВЕ;и=СД(как противолеж стороны прямоугольника);
2) пусть ЕС=х, тогда 3х=ВЕ=АВ, тогда ВС=ВЕ+ЕС=3х+х=4х=АД(как противолеж стороны прямоугольника);
тк периметр прямоуг =40см, то :
(АВ+ВС)*2=Р
(3х+4х)*2=40
7х=20
х≈2,86 , тогда ВЕ=АВ=СД=3х=3*2,86≈8,6 см
ВС=АД=4х=4*2,86≈11,4см
проверка : (11,4+8,6)*2=40см
Если что-то непонятно , пишите в комментах.
Успехов в учёбе! justDavid