Көпбұрыш – жазықтықтағы кез келген тұйық сынық сызық. Сынық сызықтың әрбір бөлігі көпбұрыштың қабырғасы, ал олардың ұштары көпбұрыштың төбелері деп аталады. Егер сынық сызық қарапайым болса, онда көпбұрыш қарапайым көпбұрыш деп, ал күрделі болса, жұлдыз тәрізді көпбұрыш деп аталады. Көпбұрыш жазықтықты бірнеше облысқа бөледі. Қарапайым көпбұрыш жазықтықты біреуінде түзу толығынан жататын, ал екіншісінде толық жатпайтын екі облысқа бөледі. Біріншісін көпбұрыштың сыртқы облысы, екіншісін ішкі облысы дейді. Көпбұрыш осы облыстардың шекарасы болады. Көпбұрыш пен оның ішкі облысын біріктірсек, екі өлшемді көпбұрыш шығады. Егер көпбұрыштың төбелері кез келген қабырғасы арқылы жүргізілген түзудің бір жағында жатса, онда оны дөңес көпбұрыш дейді. Төбесі арқылы өтетін қабырғалардың ішкі облыс жағынан жасайтын бұрышын көпбұрыштың ішкі бұрышы дейді.
В равнобедренном треугольнике углы при основании равны. ∠ВАС=∠ВСА
Обозначим данный треугольник АВС; О - точку пересечения прямых ЕТ||АВ и МК||АС.
АС секущая при ВА║ЕТ ⇒
∠ЕТС=∠ВАС как соответственные.
ЕТ секущая при МК║АС⇒
∠ЕОК=∠ЕТС как соответственные, следовательно, ∠ЕОК=∠ВАС.
ВС секущая при МК||АС⇒
∠ЕКО=∠ВСА, как соответственные. .
Следовательно, ∠ЕКО=∠ЕОК. что является признаком равнобедренного треугольника. ⇒
Треугольник ЕОК равнобедренный с углами при основании, которые равны углам при основании АС треугольника АВС.