Обозначим О - центр окружности; АВ - касательная; АС -секущая; СD - внутренний отрезок секущей (рисунок в приложении). По условиям задачи: АВ+АС=30 см AB-CD=2 Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: АВ²=АС*DA Выразим: AC=30-AB CD=AB-2 Пусть АВ=х см, тогда АС=30-х СD=x-2 АС=DA-DC=30-x-x+2=32-2x АВ²=АС*DA=(30-x)*(32-2x) x²=(30-x)*(32-2x) x²=960-32х-60х+2х² 2х²-х²-92х+960=0 х²-92х+960=0 D=b²-4ac=(-92)²-4*1*960=8464-3840=4624 (√4624=68) x₁=(-b+√D)/2a=(-(-92)+68)/2*1=160/2=80 - не соответствует условиям задачи x₂=(-b-√D)/2a=(-(-92)-68)/2*1=24/2=12 АВ=12 см АС=30-АВ=30-12=18 см ответ: касательная равна 12 см, секущая - 18 см.
Обозначим точку касания как К. Соединим К с центром О. ОК - радиус окружности и перпендикулярен касательной по определению. Более того, он проходит через середину хорды АВ и перпендикулярен ей. Доказательство: АВ параллельно касательной К, следовательно ОК перпендикулярно АВ, поскольку перпендикулярно касательной. Соединим О с концами хорды АВ и получим равнобедренный треугольник АВО, в котором высота ОК является одновременно и медианой, т.е хорда АВ делится пополам. Следовательно отрезок соединяющий точку касания и точку пересечения хорды с радиусом ОК является искомым расстоянием. Обозначим точку пересечения хорды АВ с радиусом ОК через D. Тогда нам надо найти отрезок КD. Рассмотрим треугольник АОD. Он прямоугольный. АО - гипотенуза и равна 65 по условию, т.к. она радиус. АD - катет и равен половине АВ, т.е. 63. Далее по теореме Пифагора находим второй катет - АО. И находим расстояние. Это будет ОК-АО.
я точно не знаю но думаю это 1