Пусть о – центр окружности, аbсdef – данный шестиугольник сторона шестиугольника ab=а=6см. для шестиугольника радиус описанной окружности равен стороне шестиугольника r=a r=6 см центральный угол правильного шестиугольника равен 360\6=60 градусов площадь кругового сектора вычисляется по формуле sкс=pi*r^2*альфа\360 градусов где r – радиус круга, а альфа - градусная мера соответствующего угла. sкс=pi*6^2*60 градусов\360 градусов= 6*pi см^2 площадь треугольника аоb равна аb^2*корень (3)\4= =6^2 *корень (3)\4=9*корень (3) см^2 . площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой= площадь кругового сектора- площадь треугольника аос площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой (площадь меньшей части круга, на которые его делит сторона шестиугольника) = =6*pi- 9*корень (3) см^2 . ответ: 6*pi см^2, 6*pi- 9*корень (3) см^2
1. Верно ли утверждение: "Четырехугольник является правильным, если все его углы равны между собой"?
б) нет, так как должны быть равны и стороны, иначе это может быть прямоугольник.
2. Все стороны многоугольника являются хордами окружности. Можно ли утверждать, что многоугольник описан около окружности?
б) нет, этот многоугольник вписан в окружность.
3. Чему равна дуга окружности (в градусах), стягиваемая стороной правильного треугольника?
б) 120° (360° : 3) .
4. Сколько сторон имеет правильный многоугольник, у которого сумма всех его углов равна 540°?
Сумма углов многоугольника равна 180°(n - 2), где n - количество сторон.
180°(n - 2) = 540°
n - 2 = 3
n = 5
а) 5.
5. Чему равна длина окружности, если ее диаметр равен 50 см?
С = πd = 50π см
а) 50π см.
6. Из круга, радиус которого равен 20 см, вырезан сектор. Дуга сектора равна 90°. Чему равна площадь оставшейся части круга?
Дуга оставшейся части круга:
α = 360° - 90° = 270°
Sсект = πR² · α / 360°
Sсект = π · 400 · 270° / 360° = 300π см²
а) 300π см²