a)Треугольник АВМ - равнобедренный ⇒ АВ=ВМ
Треугольник ДМС - равнобедренный ⇒ СД=МС
А так как АВ=СД (как противоположные стороны параллелограмма), то и ВМ=МС.
Значит, если АВ=х, то ВС=2х.
Полупериметр равен 36:2=18 см.
х+2х=18
3х=18
х=6
АВ=СД=6 см
ВС=АД=2·6=12 (см)
ответ. 6 см и 12 см.
b)Проведем высоты ВМ и СН. Так, как меньшая основа будет 6см., а большая 12, и эта трапецыя равобедренная, то ВС=МН, отсюда АМ=НД, ВС=12-6=6см.
НД+АМ=12-6=6см., а значит НД=6/2=3см.
Расмотрим треугольник АВМ, у него: ВМА=90гр., как угол при высоте; ВАМ=60гр., за условием задачи, отсюда угол АВМ=30гр. Значит АМ=1/2*ВА, отсюда ВА=2*АМ=2*3=6см.
ответ:6см.
Количество диагоналей N у многоугольника легко вычислить по формуле:
N = n·(n – 3)/2,. где n — число вершин многоугольника,
тогда 20 = n·(n – 3)/2,
40 = n·(n – 3) ,
n² - 3n -40 = 0
n₁ =-5 ( не подходит по смыслу задачи)
n₂ = 8.
ответ: 8 сторон.