94)
Угол - у. (буду так сокращать)
1. у1=у2 => а параллельно в (как соответственные углы)
2. у2=у4 (у4 - угол напротив угла 2) - как вертикальные углы
3. у2=у4=у2 => в параллельно с (как соответственные углы)
4. а параллельно в, в параллельно с => а параллельно с.
ЧТД
95)
1. Продлим ВС и В1С1.
уВСА=уВ1С1А1 (т. к треугольники равнобедренные) =>
При ВС и В1С1 и секущей АС1 - углы ВСА и В1С1А1 - соответственные углы, => ВС параллельно В1С1
ЧТД
96)
1. у. РЕВ = у. 1 как вертикальные
у. 1 = у. 2 (т. к треугольник равнобедренный)
2. у. ЕNF= 180° - у. 1 - у. 2 = 180° - у. МЕР - у. РЕВ = у. МЕА (а они в свою очередь соответственные) => АВ параллельно CD
ЧТД
ВD1 - диагональ куба, DA1 - диагональ грани АА1D1D.
BD1 и DA1 - скрещивающиеся прямые.
Диагональ грани можно найти по теореме Пифагора:
DA1=√(AD²+AA1²)=√(1+1)=√2.
Диагональ куба можно найти , применив два раза теорему Пифагора:
ВD=√(AD²+AB²)=√2 , BD1=√(BD²+²DD1²)=√(2+1)=√3 .
Теперь проведём прямую D1A2║DA1 в плоскости AA1D. Мы как бы достроим пл. AA1D1D до пл. AA2D2D. Получили, что плоск. AA2D2D - прямоугольник, причём D1A2=DA1=√2.
Теперь можем соединить точки В и А2, т.к. они лежат в одной плоскости АВА2.
Рассмотрим ΔВА2D1. Угол BD1A2 будет искомым углом, т.к. угол между скрещивающимися прямыми можно найти как угол между прямыми, параллельными заданным скрещивающимся прямым.
Найдём ВА2 из ΔАВА2: ∠ВАА2=90° , АВ=1, А1А2=1+1=2 ( по построению).
ВА2=√(АВ²+АА2²)=√(1+4)=√5 .
Применим теорему косинусов для ΔВА2D1:
BA2²=D1A2²+BD1²-2·D1A2·BD1·cos∠BD1A2
5=2+3-2·√2·√3·cos∠BD1A2 ⇒ cos∠BD1A2=0 ⇒ ∠BD1A2=90°
Подробнее - на -
Объяснение:
Может быть не правильно( не проверял