1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)
кат. 2 =40 (Кат.1)^2 + (Кат.2)^2 = (Гип.)^2
гип.-? 9^2 + 40^2 = (Гип.)^2
81 + 1600 = (Гип.)^2
Гип. = √1681
Гип. = 41
2. 25^2 - 15^2 = kat^2
625 - 225 = kat^2
kat = √400
kat = 20
1. Треугольник равносторонний т.к. АВ = ВС = АС
Высота в равностороннем треугольнике является медианой =>
Cторона на которую падает высота делится на 2 равных отрезка:
тогда по теореме Пифагора:
CH=
2. Рассмотрим треугольник СНА:
Т. к. угол С = 30 гр.,
то АН - катет, лежащий против угла в 30 градусов, значит, он равен половине гипотенузы АС
АН =1/2 АС =>
АН = 1/2 * 22 = 11 см