2. Т.к. CD можно рассматривать как секущую к прямым BC и AD, то доказательство параллельности AD и BC сводится к нахождению каких-нибудь особых пар углов, которые при параллельности прямых дают определенное значение. Например, можно сказать, что т.к. угол ADC = 15° + 75° = 90°, а угол BCD равен также 90°, то сумма BCD и ADC равна 180. Эта пара углов называется внутренние односторонние. Доказывается, что если их сумма равна 180° (как в нашем случае), то прямые, которые пересекаются секущей, параллельны. То есть AD║BC.
Проводим прямую. Отмечаем точку А - одну из вершин нашего треугольника на прямой, отмечаем отрезок, равный периметру треугольника - находим т. К, откладываем заданный угол с вершиной в т. А. Из т. А проводим перпендикуляр к первой проведенной прямой. Откладываем на нем отрезок, равный высоте - находим т. Я. От нее откладываем перпендикуляр к последней прямой, находим его пересечение с другой стороной угла. Нашли точку В. От точки К откладываем отрезок, равный АВ; находим точку С. Соединяем В и С. ABC -искомый треугольник.
Объяснение:
1. 3) (неравенство треугольника);
2. Т.к. CD можно рассматривать как секущую к прямым BC и AD, то доказательство параллельности AD и BC сводится к нахождению каких-нибудь особых пар углов, которые при параллельности прямых дают определенное значение. Например, можно сказать, что т.к. угол ADC = 15° + 75° = 90°, а угол BCD равен также 90°, то сумма BCD и ADC равна 180. Эта пара углов называется внутренние односторонние. Доказывается, что если их сумма равна 180° (как в нашем случае), то прямые, которые пересекаются секущей, параллельны. То есть AD║BC.