а где продолжение условия? основанием пирамиды dabc является правильный треугольник abc сторона которого = ребро da перпендикулярно к плоскости авс , а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2
Пусть О₁ и O₂ - центры квадратов построенных на BC и AD соответственно, О - точка пересечения диагоналей трапеции, О' - точка пересечения AC и O₁O₂. Докажем, что О' совпадает с О. 1) O₁C||O₂A, т.к. ∠O₁CA=45°+∠BCA, ∠O₂AC=45°+∠DAC, ∠DAC=∠BCA, т.е. внутр. накрест лежащие углы ∠O₁CA и ∠O₂AС равны. 2) Значит треугольники O₁CO' и O₂AO' подобны (по двум углам), т.е. CO'/AO'=CO₁/AO₂=(BC/√2)/(AD/√2)=BC/AD. 3) Но О тоже делит AC в отношении BC/AD, т.к. треугольники BCO и DAO подобны. Значит O' совпадает с O.
а где продолжение условия? основанием пирамиды dabc является правильный треугольник abc сторона которого = ребро da перпендикулярно к плоскости авс , а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2