Пирамида правильная, значит треугольник АВС - правильный (равносторонний), а вершина S проецируется в центр О треугольника АВС. AS - боковое ребро =13. SH - апофема = 10. АН - половина стороны (так как в правильной пирамиде боковые грани - равнобедренные треугольники), по Пифагору равна √(AS²-SH²) или АН=√(169-100)=√69. АВ=2√69. АВС - правильный треугольник, в котором СН - высота, медиана и биссектриса. СН=(√3/2)*АВ (формула). СН=(√3/2)*2√69=3√23. НО=(1/3)*СН (свойство медианы) или НО=√23. Из прямоугольного треугольника SOH по Пифагору: SO=√(SH²-HO²) или SO=√(100-23) =√77. ответ: SO=√77.
11. Вроде как сумма всех внешних углов равна 900 градусов. (360*3-180(сумма всех внутренних углов треугольника). 360-60 = 300 - внешний угол того что 60 градусов. 900 - 300 = 600 градусов осталось. Т.к. один в двое больше другого, то они равны 200 и 400 соответственно. А разность = 200 градусов.
12. Если это диаметры одной и той же окружности (а как известно диаметр проходит через центр) то они не могут быть параллельны.
13. , где x и y углы.
14. представим угол А за Х; x + 5х + x + 40 = 180; 7x = 140; x = 20 градусов. соответственно угол А = 20; угол В = 60 градусов, а угол С = 100 градусов.
15. Так как BD - это высота, то углы BDC и BDA прямые. Также BD - биссектриса угла MDH. Следовательно углы HDC и MDA равны. А так как треугольник ABC - равнобедренный, то и отрезки HC и MA равны. Но все равно желательно нарисовать.
16. Общий угол при пересечении прямых = 180 градусов. Значит второй угол у одной из параллельных прямых равен 180 - 112 = 68 градусов. У второй параллельной прямой то же самое только зеркально отображено. Тоже желательно нарисовать.
17. Треугольник АВС является равнобедренным. А у него углы у основания одинаковые. А так как углы CAD и BAC равны, то можно прийти к выводу что и стороны у этой фигуры равны. Но это не обязательно квадрат.
AS - боковое ребро =13.
SH - апофема = 10.
АН - половина стороны (так как в правильной пирамиде боковые грани - равнобедренные треугольники), по Пифагору равна √(AS²-SH²) или
АН=√(169-100)=√69.
АВ=2√69.
АВС - правильный треугольник, в котором СН - высота, медиана и биссектриса. СН=(√3/2)*АВ (формула).
СН=(√3/2)*2√69=3√23.
НО=(1/3)*СН (свойство медианы) или
НО=√23.
Из прямоугольного треугольника SOH по Пифагору:
SO=√(SH²-HO²) или SO=√(100-23) =√77.
ответ: SO=√77.