В тр.АDC и СBD уг.DCB=уг.CAB т.к.градусная мера дуги CB равна половине уг.DCB и на эту же дугу опирается вписанный угол CAB,который тоже равен половине градусной меры дуги,на которую опирается) уг.CDB-общий для обоих треугольников,значит по признаку подобия тр. ADC и CBD подобны. Значит,по определению подобных треугольников: CD/BD=AC/BC=AD/CD AC/BC=AM/MB=10/18(по свойству биссектрисы) AD=CD*10/18 BD=CD*18/10 AD+28=CD*18/10 CD*10/18+28=CD*18/10 28=CD*18/10-CD*10/18 28=(18*18*CD-10*10*CD)/180 28*180=CD(324-100) CD=28*180/224=180/8=22,5 CD=22,5
Прямоугольный тр-к вписан в окружность - это значит, что прямой угол опирается на диаметр окружности и гипотенуза этого тр-ка и есть диаметр.
Найдём гипотенузу. Пусть гипотенуза с = 5х, тогда в силу условия, что гипотенуза и катет относятся как 5:4, катет равен а = 4х, второй катет в = 16см.
По теореме Пифагора
с² = а² + в²
25х² = 16х² + 16²
9х² = 16²
3х = 16
х = 16/3
Тогда гипотенуза с = 5х = 5· 16/3 = 80/3(см)
Это диаметр, а радиус равен половине диаметра: R = 80/3 : 2 = 40/3(cм)
или 13cм.