дано:
прямая fd1 принадлежит плоскости aa1d
решение
прямая ad так же принадлежит этой плоскости, но кроме того, она принадлежит и плоскости abd, а значит, найдя точку пересечения этих прямых (а они будут пересекаться так как лежат в одной плоскости и не параллельны) мы и найдем точку пересечения fd1 с плоскостью abd. на рисунке это точка z (прошу прощения у меня довольно криво)
2. так как плоскости a1b1c1 и abc параллельны, то и линии пересечения этих плоскостей третьей параллельны (свойство параллельных плоскостей)
так как мы уже нашли точку пересечения плоскости fb1d1 с плоскостью abd (предыдущее ), то проводим параллельную прямую через нее . чертёж не смогла вставить . поищи в инете .
Вписанная в ромб окружность делит его сторону на отрезки 4,5 см и 2 см. Вычисли длину вписанной в ромб окружности (π=3,14).
(ответ округли до сотых.)
Объяснение:
Пусть ABCD-ромб, точка O – это центр вписанной окружности , F — точка касания окружности со стороной ромба AB.
Тогда ОF⊥ АВ, по свойству касательной, AF=4,5 см , BF=2 см.
Δ ВОА-прямоугольный ( диагонали ромба взаимно-перпендикулярны)Т.к. высота в прямоугольном треугольнике есть среднее пропорциональное между проекциями, то
r=ОF=√BF*FA,
r=√(4,5*2)=√9=3 (см).
Длина окружности С=2пr
С=2•3,14•3= 18,84 ( см).
Т.к в.н - это биссектриса, и т.к она образует перпендикуляр к стороне АС. то ВН еще и высота значит делит сторону АС пополам Тогда AH=HC=4См
т.к BC=AB то BC=10см