На стороне АВ выпуклого четырехугольника АВCD выбрана точка М так, что AMD ADB и ACM ABC . Утроенный квадрат отношения расстояния от точки А до прямой CD к расстоянию от точки С до прямой AD равен 2, CD = 20. а) Докажите, что треугольник ACD равнобедренный.
б) Найдите длину радиуса вписанной в треугольник АСD окружности.
Соединим центр О окружности с концами хорды АВ. ОА=ОВ=R.
Треугольник АОВ - равнобедренный. Проведем высоту ОН этого треугольника.
Угол ОНВ=углу ОНА=90º
«Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один»
Следовательно, и к середине хорды можно провести только один перпендикуляр.
Высота ОН - медиана равнобедренного треугольника.
АН=ВН. Точка Н - середина АВ.
Следовательно, ОН, проходящий через середину АВ, есть срединный перпендикуляр хорды АВ, ч.т.д.