М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
iliasbro87073799809
iliasbro87073799809
05.10.2020 05:30 •  Алгебра

Географическое положение Японии ​

👇
Ответ:
chelbaeva77
chelbaeva77
05.10.2020
Находится в Восточной Азии, расположено на 4 крупных островах (Кюсю, Сикоку, Хонсю и Хоккайдо), островах Рюкю и более чем 4 тыс. мелких островов. На севере омывается Охотским морем, на востоке – Тихим океаном, на юге – Тихим океаном и Восточно-Китайским морем, на западе – Корейским проливом и Японским морем.
4,6(41 оценок)
Ответ:
POPKA1kemping
POPKA1kemping
05.10.2020

Находится в Северном полушарии по отношению к экватору

Объяснение:

государство расположенно в Восточной Азии

4,8(84 оценок)
Открыть все ответы
Ответ:
LoVeR789
LoVeR789
05.10.2020

Задачка интересная, смотри, как такие решаются.

 

В таких задачках главное- последняя цифра числа, которое возводится в степень

 

В первом случае 2001 оканчивается на 1, а 1 в любой степени 1, поэтому и 2001 в любой степени оканчивается на 1.

 

Во втором случае число оканчивается на 9. Исследуем, на какую цифру будут оканчиваться степени 9

Степень      Последняя цифра 9^n

     1                              9

     2                              1

     3                              9

     4                              1

и т.д.  уже видно, что при возведении в чётную степень последняя цифра 1, в нечётную -  2

. Таким образом

1999^2002 оканчивается на 1 (2002 - чётное число)

1999^1333 оканчивается на 2 (1333 - нечётное число).

 

Вот, примерно, так.

Попробуй исследовать поведение последней цифры числа 2013^n, 1917^n. Получится интересней.

 

Ну и последнее. Всё это просто рассуждения, а как же это всё доказать, можешь ты спросить. Так же просто. Смотри, например, случай 1.

Любое число, оканчивающееся на 1 можно представить в виде 10*к +1. Значит его степень

(10*к+1)^n = 10^n*k^n + +1^n(это бином Ньютона) = 10*R +1.

то есть любое число, оканчивающееся на 1 в любой степени оканчивается на 1.

Так же через бином Ньютона доказывается и всё остальное.

Успехов!

 

Да, и ещё. Условие у тебя очень нечёткое, если в самом деле нет запятых, то в 1 - решение то же, а в 2 нужно поисследовать ещё на какую цифру оканчивются степени 2002, то есть 2

степень  посл. цифра 2^n

    1                   2

     2                  4

    3                    8

     4                   6

     5                   2

     6                   4

     7                    8

ну и тд. то есть это всегда чётное число, поэтому

(1999)^(2002^1333) оканчивается на 1, так как показатель чётный.

Вот теперь совсем всё.

Пиши четче задания! Видишь, как много может значить какая-то запятая!

 

4,5(17 оценок)
Ответ:
annya306
annya306
05.10.2020
1. y=-x²+2x+3
а) функция пересекает ось ОХ в точках х=-1 и х=3, это и есть нули функции;
б) у>0 на промежутке (-1;3), у<0 на промежутках (-∞;-1)∪(3;+∞);
в) функция возрастает на промежутке (-∞:1) и убывает (1;+∞);
г) наибольшее значение функции y=4;
д) область значений функции (-∞;4).

2. y=2x²+8x
а) нули функции
2x²+8x=0
2x(x+4)=0
2x=0    x+4=0
x=0      x=-4
б) находим точки экстремума функции
y'=(2x²+8x)'=4x+8
4x+8=0
4x=-8
x=-2
            -                          +
-------------------(-2)--------------------
На промежутке (-∞;-2) производная функции <0, следовательно функция убывает.
На промежутке (-2;+∞) производная функции >0, следовательно функция возрастает.
в) Точка экстремума х=-2, в этой точке значение функции
у=2*(-2)²+8(-2)=8+(-16)=-8
Производная в точке х=-2 меняет знак с "-" на "+" значит это точка минимума. График функции парабола ветви которой направлены вверх (коэффициент при х² положительный), следовательно область значений функции (-8;+∞).
1. постройте график функции y=-x^2+2x+3 и найдите , используя график: а) нули функции б) промежутки
4,8(13 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ