Объяснение:1. Две прямые называются параллельными, если они
г) не пересекаются на плоскости
2. Две прямые параллельны, если при пересечении их секущей
г) внутренние накрест лежащие углы равны
3.Две прямые параллельны, если при пересечении их секущей
в) сумма внутренних односторонних углов равна 180 градусов;
4.Две прямые параллельны, если при пересечении их секущей
а) соответственные углы равны;
5)Сколько параллельных прямых можно провести через точку не лежащую на данной прямой
б) одну;
6)Две прямые пересечены секущей. Чему равна сумма внутренних односторонних углов, если внутренние накрест лежащие углы равны?
а) 180°
7) Две прямые пересечены секущей. Внутренние односторонние углы в сумме составляют 180 градусов, а один из соответственных углов равен 36 градусов. Чему равен второй из соответственных углов?
г)36°
8). Сумма внутренних накрест лежащих углов при параллельных прямых и секущей равна 220^0. Чему равны эти углы?
в)110°
9). Один из внутренних односторонних углов при параллельных прямых и секущей равен 50 градусов. Найдите второй внутренний односторонний угол. Отв: 180°-50°=130°; Отв: 130°
Решение
Пусть ABCDA1B1C1D1 – данная призма, основания ABCD и A1B1C1D1 которой – ромбы со стороной 2, причём DAB = 30o и AA1 = BB1 = CC1 = DD1 = 1 . Если DF – высота ромба ABCD , опущенная на сторону AB , то по теореме о трёх перпендикулярах D1F AB , поэтому DFD1 – линейный угол двугранного угла между плоскостями основания ABCD и диагонального сечения AD1C1B . Так как DF = AD sin 30o = 1 , то tg DFD1 = = 1 . Поэтому DFD1 = 45o < 60o . Значит, данная в условии секущая плоскость пересекает рёбра A1D1 и B1C1 . Обозначим через M и N соответствующие точки пересечения. Поскольку плоскости оснований параллелепипеда параллельны, а также параллельны плоскости противоположных боковых граней, то четырёхугольник AMNB – параллелограмм. Пусть MP – перпендикуляр, опущенный из точки M на плоскость основания ABCD . Поскольку плоскости AA1D1D и ABCD перпендикулярны, точка P лежит на их прямой пересечения AD . Если MQ – высота параллелограмма AMNB , опущенная на сторону AB , то по теореме о трёх перпендикулярах PQ AB , поэтому MQP – линейный угол двугранного угла между плоскостями AMNB и ABCD . По условию задачи MQP = 60o . Значит,
MQ = = = .
Следовательно,
SAMNB = AB· MQ = 2· = .
Объяснение:
Пусть сторона куба а;
К = а*sqtr(3); // sqrt - корень
a = K / sqrt(3);
d = K / sqrt(1,5) // Диагональ основания
S = 6 * (K ^ 2) / 3 = 2 * (K ^ 2)