Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
ответ: 10
Объяснение:
Сделаем рисунок 1 согласно условию задачи.
Проведем через О и С диаметр КМ, КО=ОМ=R.
КC=R+5, CM=R-5.
По т. о пересекающихся хордах ( а диаметр - наибольшая хорда окружности) при пересечении двух хорд окружности произведение отрезков одной хорды равно произведению отрезков другой хорды: АС•СВ=КС•СМ
15•5=(R+5)•(R-5) ⇒
R²-25=75
R²=100
R=10⇒
КМ=2R=20. Но АВ=АС+ВС=15+5=20. Следовательно, АВ - диаметр данной окружности, и рисунок должен выглядеть несколько иначе (см.рис.2. )