Трикутник АВС, кут С=90, АВ=13, ВС=12, АС=5, АМ=МВ=АВ/2=13/2=6,5, проводимо перпендикуляр МН на АС, МН паралельна ВС, і згідно теореми Фалеса відсікає на АС рівні відрізки, АН=НС, МН-середня лінія=1/2ВС=12/2=6
2.трапеція АВСД, МН-середня лінія=9, ВС/АД=0,8, ВС=0,8АД, (ВС+АД)/2=МН, (0,8АД+АД)/2=9, 1,8АД=18, АД=10, ВС=0,8*10=8
3.Трапеція АВСД, АВ=СД=10, у трапецію можливо вписати коло за умови - сума бічних сторін=сумі основ, АВ+СД=ВС+АД, 10+10=ВС+АД, МН- середня лінія=(ВС+АД)2=20/2=10
4.трикутник АВС, АВ=ВС=АС, МН-середня лінія=1/2АС, АС=2*МН=2*6=12, периметр=12+12+12=36
5. Біля чотирикутника можливо описати коло за умови-сума протилежних кутів=180, кутА+кутС=3х+1х=4х=180, х=45, кутА=3*45=135, кутС=1*45=45, кутД=180-кутВ=180-100=80
ответ:
объяснение:
пирамида правильная. значит, основанием данной пирамиды является правильный треугольник, а вершина проецируется в его центр.
центр правильного треугольника - центр вписанной и описанной окружности, т.е. точка пересечения его высот, являющихся в правильном треугольнике и медианами и биссектрисами.
а)
площадь поверхности пирамиды - сумма площадей основания и боковой поверхности.
формула площади правильного треугольника через его сторону
s=a²•√3/4
s(abc)=16√3/4=4√3 см²
в правильной пирамиде все боковые грани - равные равнобедренные треугольники.
для нахождения их площади следует найти апофему (апофемой называется высота боковой грани, проведенная из вершины правильного многоугольника.)
углы правильного треугольника равны 60°
высота основания сн=вс•sin60°=4•√3: 2=2√3
в правильном треугольнике высота=медиана.
медианы треугольника точкой пересечения делятся в отношении 2: 1, считая от вершины. =>
он=2√3: 3=2√3: 3
он⊥ав=>
по т. о 3-х перпендикулярах мн⊥ав и является высотой ∆ амс.
высота пирамиды перпендикулярна плоскости основания. =>
мо⊥сн
по т.пифагора из прямоугольного ∆ мон
мн=√(mo*+oh*)=√(36+12/9)=√(336/9)=(√336)/3
s(amb)=mh•ab: 2=(2√336)/3
s (бок)=3•(2√336): 3=2√336
s (полн)=4√3+2√336=2√3•(2+√112)=≈ 43,5888 см²