М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
annablakfare303030
annablakfare303030
25.06.2021 07:07 •  Математика

№1 между какими соседними целыми числами заключено число: -0,8; 0,941; -15 1/8; -4,73; -213,8? №2 расположите числа в порядке возрастания: -6,7; -0,5; -18; -6 2/7; 5; -19,4; -1,39; 5,4; -1,9; 0. №3 найди 5 решений неравенств: а)-1/4

👇
Ответ:
MartynaEvgeneva
MartynaEvgeneva
25.06.2021
1.0-0,8-1. 0-0,941-1. -14- -15- -16. 1/7 1/8 1/9. -3 -4 -5. 72 73 74. -212 -213 -214.  7 8 9.
0,0,5,1,9,1,39,2/7,4,5,5,4 -18,-19
4,7(79 оценок)
Открыть все ответы
Ответ:

ответ: x=-2

Пошаговое объяснение:

\sqrt{12+\sqrt{12+\sqrt[]{20+4x+x^2} } } =x^2+4x+8\\x^2+4x+8 = (x+2)^2+4 = t\geq4 \\\sqrt{12+\sqrt{12+\sqrt[]{12+t} } } = t

Пусть:

f(g) =\sqrt{12+g}

Тогда уравнение принимает вид:

f(f(f(t))) = t    

Заметим, что если t_{0} корень уравнения f(t) = t , то он и корень уравнения:

f(f(f(t))) = t , действительно:

f(t_{0} ) = t_{0}\\f(f(t_{0})) = f(t_{0}) =t_{0}\\f(f(f(t_{0})))= f(f(t_{0}))= t_{0}

Найдем все такие корни:

\sqrt{12+t} =t\\t\geq0 \\12+t =t^2\\t^2-t-12=0\\t_{1} =4\\t_{2} =-3

Заметим, что функция f(g) - монотонно возрастает.    

Предположим, что в уравнении  f(f(f(t))) = t  существует корень t_{1} , такой, что  f(t_{1} } )\neq t_{1}

Рассмотрим случай:  f(t_{1} }) t_{1} .

Поскольку, f(g) - монотонно возрастает, то если для некоторых двух ее аргументов выполнено неравенство: g_{1} g_{2} , то верно и данное неравенство: f(g_{1} )f(g_{2} )

Из данного утверждения следует, что :

f(f(t_{1} })) f(t_{1})t_{1}\\f(f(f(t_{1} }))) f(f(t_{1}))f(t_{1})t_{1}

Но  f(f(f(t_{1} }))) =t_{1} , то есть мы пришли к противоречию.

Аналогично показывается невозможность утверждения для случая

f(t_{1} }) .  Таким образом, других корней помимо x=-2 нет.

4,7(64 оценок)
Ответ:
All2006
All2006
25.06.2021
Выпишем все числа от 2017 до 20179999, а затем эти же числа, но увеличенные на 14:

2017, 2018, ... 2030, (2031, ... , 20179999)
(2031, ... , 20179999), 20180000, ... , 2018013

В скобки взяты одинаковые части двух последовательностей. При вычитании произведений цифр каждого числа первой последовательности из произведений цифр этого же числа второй последовательности, мы получим нуль.
Осталось перемножить все цифры оставшихся чисел первой и второй последовательности и найти разность.
Произведение цифр каждого числа первой последовательности 2017, 2018, ..., 2029, 2030 равно нулю. Также равно нулю произведение цифр всех оставшихся чисел второй последовательности - 20180000, 20180001, ... , 20180013. Произведения цифр чисел равны нулю, т.к. в каждое число входит цифра 0.
Следовательно, сумма всех чисел, выписанных в тетрадь Фоксом, равно нулю.
4,4(3 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ