Допустим, прямая не пересекает плоскость бета, а параллельна ей. Тогда все точки этой прямой должны находиться на равном удалении от плоскости бета (иначе один из концов пряой приблизится к плоскости бета и пересечет ее) . Одна точка, точка пересечения прямой с плоскостью альфа, находится на том же расстоянии от плоскости бета, что и плоскость альфа. Следовательно все остальные точки прямой находятся на таком же расстоянии, т. е. лежат в плоскости альфа, значит вся прямая долна лежать в плоскости альфа. Но по условию прямая не лежит в плоскости альфа, а пересекает ее. Таким образом она не может быть параллельна плоскости бета и пересечется с ней.
2Проведем в плоскости α две пересекающиеся прямые a и b, а через точку А проведем прямые a1 и b1, соответственно параллельные прямым а и b. Рассмотрим плоскость β, проходящую через прямые a1 и b1. Плоскость β — искомая, так как она проходит через точку A и по признаку параллельности двух плоскостей параллельна плоскости α.Докажем теперь, что β — единственная плоскость, проходящая через точку А и параллельная плоскости &alpha. В самом деле, любая другая плоскость, проходящая через точку А, пересекает плоскость β, поэтому пересекает и параллельную ей плоскость a
1. а) 176 см²; б) 4 см.
2. 113,4 см²
3. 7,8 см.
4. 1) 5 см; 2) 10 см; 3) 8 см.
Объяснение:
1. Площадь параллелограмма равна S=ah.
a) S=16*11=176 см ².
б) S=ah; a=S/h=102/25.5=4 см .
***
2. Проведем высоту ВЕ⊥AD.
Из ΔАВЕ ВЕ/АВ=Sin30°, откуда ВЕ=14*(1/2)=7 см.
S=AD*BE=16.2*7= 113.4 см².
***
3. S=ah, где а=9 см, b =2.6 см; S=9*2.6= 23.4 см².
S=ah, где а=3. Найдем h.
3h=23.4;
h=23.4/3;
h=7.8 см.
Доп. вопрос: Не зависит, главное, чтобы она была правильной и применима к данной фигуре.
***
4. 2h=a;
S=ah;
H=2(a+b).
S=2h*h=50;
2h²=50;
h²=25;
h=√25=±5; (-5 - не соответствует условию).
1) h=5 см .
а=2h=2*5=10 см.
2) а=10 см.
Р= 2(a+b);
2(10+b)=36;
10+b=18;
3) b=8 см.